Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2423 results about "Halogenation" patented technology

Halogenation is a chemical reaction that involves the addition of one or more halogens to a compound or material. The pathway and stoichiometry of halogenation depends on the structural features and functional groups of the organic substrate, as well as on the specific halogen. Inorganic compounds such as metals also undergo halogenation.

Apparatus and process for mediated electrochemical oxidation of materials

A unique apparatus unique apparatus and process that uses mediated electrochemical oxidation (MEO) for: (1) Destruction of: a) nearly all organic solid, liquid, and gases materials, except fluorinated hydrocarbons; b) all biological solid, liquid, and gases materials; c) and/or dissolution and decontamination (such as cleaning equipment and containers, etc.) of nearly all inorganic solid, liquid, or gas where higher oxidation states exist which includes, but is not limited to, halogenated inorganic compounds (except fluorinated), inorganic pesticides and herbicides, inorganic fertilizers, carbon residues, inorganic carbon compounds, mineral formations, mining tailings, inorganic salts, metals and metal compounds, etc.); and d) combined materials (e.g. a mixture of any of the foregoing with each other); henceforth collectively referred to as materials. (2) Sterilization/disinfection of equipment, glassware, etc., by destroying all existing infectious materials. (3) Dissolution of transuranic/actinide materials and/or destruction of the oxidizable components in the hazardous waste portion of mixed waste. (4) Generation of hydrogen and oxygen from MEO of materials. (5) Alteration of organic, biological, and inorganic materials by MEO to produce other compounds from these materials. The materials are introduced into an apparatus for contacting the materials with an electrolyte containing the oxidized form of one or more reversible redox couples, at least one of which is produced electrochemically by anodic oxidation at the anode of an electrochemical cell. The oxidized forms of any other redox couples present are produced either by similar anodic oxidation or reaction with the oxidized form of other redox couples present and capable of affecting the required redox reaction. The oxidized species of the redox couples oxidize the materials molecules and are themselves converted to their reduced form, whereupon they are reoxidized by either of the aforementioned mechanisms and the redox cycle continues until all oxidizable material species, including intermediate reaction products, have undergone the desired degree of oxidation. The entire process takes place at temperatures between ambient and approximately 100° C. The oxidation process may be enhanced by the addition of reaction enhancements, such as: ultrasonic energy and/or ultraviolet radiation.
Owner:SCIMIST LNC

Support of olefinic polymerization catalyst and preparation method thereof, solid catalyst components for olefinic polymerization and olefinic polymerization catalyst

The invention relates to a support of an olefinic polymerization catalyst and a preparation method thereof, solid catalyst components for olefinic polymerization and an olefinic polymerization catalyst. The support of the olefinic polymerization catalyst is dialkoxy magnesium. The preparation method of the support of the olefinic polymerization catalyst comprises the following steps: in an inert gas protective atmosphere, reacting magnesium and alcohol, which serve as raw materials, in the presence of a halogenating agent under reflux to prepare the dialkoxy magnesium, wherein the weight ratio of alcohol to magnesium is (4-50):1; the halogenating agent is at least one of halogen simple substances and halides, and the mol ratio of halogen atom to magnesium is (0.0002-0.2):1; and the dialkoxy magnesium is spherical particles of which the average particle size is 10-150 um and the particle size distribution index SPAN is smaller than 1.1. The olefinic polymerization catalyst prepared by the support has high activity, and the polymer has the advantages of high bulk density, good particle shape and uniform distribution; and thus, the olefinic polymerization catalyst is suitable for producing propylene homopolymer and copolymer.
Owner:CHINA PETROLEUM & CHEM CORP +1

Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions

Methods are disclosed of making linear and cross-linked, HMW (high molecular weight) polysilanes and polygermanes, polyperhydrosilanes and polyperhydrogermanes, functional liquids containing the same, and methods of using the liquids in a range of desirable applications. The silane and germane polymers are generally composed of chains of Si and/or Ge substituted with R′ substituents, where each instance of R′ is, for example, independently hydrogen, halogen, alkenyl, alkynyl, hydrocarbyl, aromatic hydrocarbyl, heterocyclic aromatic hydrocarbyl, SiR″3, GeR″3, PR″2, OR″, NR″2, or SR″; where each instance of R″ is independently hydrogen or hydrocarbyl. The cross-linked polymers can be synthesized by dehalogenative coupling or dehydrocoupling. The linear polymers can be synthesized by ring-opening polymerization. The polymers can be further modified by halogenation and/or reaction with the source of hydride to furnish perhydrosilane and perhydrogermane polymers, which are used in liquid ink formulations. The synthesis allows for tuning of the liquid properties (e.g., viscosity, volatility, and surface tension). The liquids can be used for deposition of films and bodies by spincoating, inkjetting, dropcasting, etc., with or without the use of UV irradiation. The deposited films can be converted into amorphous and polycrystalline silicon or germanium, and silicon or germanium oxide or nitride by curing at 400-600 DEG C. and (optionally) laser- or heat-induced crystallization (and/or dopant activation, when dopant is present).
Owner:ENSURGE MICROPOWER ASA

Resin composition and copper clad laminate prepared by metal foil coated with resin composition

The invention belongs to a chemical compound field, particularly referring to a resin compound and using the resin compound to coat a metal foil and applying a copper clad laminate made from the resin compound. The invention provides a halogen-free functional resin compound that has an excellent comparison tracking index or leakage resistance tracking characteristic, and a resin coated copper foil that is prepared by using the resin compound to coat a copper foil, namely a complex of the resin compound and the copper foil. The coated clad laminate prepared by the resin copper foil is used and has excellent comprehensive property, with the CTI of which being equal to and more than 400V. The resin compound of the invention overcomes the problems that in the prior art, the coated clad laminate with the CTI being equal to and more than 400V has dry flowers, exposed cloth marks and thickness and precision control, which is caused by the pre-leaching materials or bonding sheets when using reinforcing materials, meanwhile, product halogen free is realized, and the complex material of the resin compound and the copper foil has thinness, long storage period, flexible use and convenient management.
Owner:GUANGDONG SHENGYI SCI TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products