Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

357 results about "Polyoxometalate" patented technology

In chemistry, a polyoxometalate (abbreviated POM) is a polyatomic ion, usually an anion, that consists of three or more transition metal oxyanions linked together by shared oxygen atoms to form closed 3-dimensional frameworks. The metal atoms are usually group 6 (Mo, W) or less commonly group 5 (V, Nb, Ta) transition metals in their high oxidation states. They are usually colorless or orange, diamagnetic anions. Two broad families are recognized, isopolymetalates, composed of only one kind of metal and oxide, and heteropolymetalates, composed of one metal, oxide, and a main group oxyanion (phosphate, silicate, etc.). Many exceptions to these general statements exist.

Microspheres capable of binding radioisotopes, optionally comprising metallic microparticles, and methods of use thereof

One aspect of the present invention relates to a microsphere, comprising a hydrophilic polymer comprising a plurality of pendant anionic groups; a transition-metal, lanthanide or group 13-14 metal oxide, polyoxometalate or metal hydroxide or combination thereof; and a first radioisotope that emits a therapeutic β-particle. In certain embodiments, the microsphere further comprsies a second radioisotope that emits a diagnostic γ-ray; wherein the atomic number of the first radioisotope is not the same as the atomic number of the second radioisotope. In certain embodiments, the microsphere is composed of polymer impregnated with zirconia bound to 32p as the source of the therapeutic β-emissions and 67Ga as the source of the diagnostic γ-emissions. Another aspect of the present invention relates to the preparation of a microsphere impregnated with a radioisotope that emits therapeutic β-particles and a radioisotope that emits diagnostic β-emitting radioisotope and a γ-emitting radioistope; wherein the atomic number of the first radioisotope is not the same as the atomic number of the second radioisotope. In certain embodiments, said microspheres are administered to the patient through a catheter. In another embodiment, the microsphere is combined with the radioisotopes at the site of treatment.
Owner:BIOSPHERE MEDICAL INC

Production technique of benzenetetracarboxylic dianhydride by catalyzing carrier-type polyoxometalates

InactiveCN101037439AOvercome the difficulties, high production costs and other shortcomingsEasy to recycleOrganic chemistryOrganic-compounds/hydrides/coordination-complexes catalystsFixed bedIndustrial equipment
The invention discloses a craft for producing pyromellitic dianhydride catalyzed by a carrier-type poly-oxometalate, including melting the pyromellitic dianhydride by the groove, feeding to the mixing machine for evapouration after pre-heating with a feed concentration of 15.0-19.5g/m3, mixing with the air, entering into the fixed bed reactor for a oxidation, oxidating with an airspeed of 4500-6500 h-1, cooling the produced air, then condensing in the collector, getting coarse pyromellitic dianhydride. At 300-340 DEG C, the catalyzer is mostly poly-oxometalate which is fixed on the catalyst bed after loading. The mass ratio of the catalyzer to pyromellitic dianhydride is 0.2-1%. The invention has the durene in the C10 heavy aromatics as raw material, produces the pyromellitic dianhydride by oxidation in air, makes the C10 heavy aromatics be with a higher added value, uses the current resource and industrial equipments as more as possible, exploits the catalysis and synthesis path of the pyromellitic dianhydride. The invention has a low pollution and production cost, a wide development prospect and is suitable for commercial process.
Owner:NORTHEAST NORMAL UNIVERSITY

Copper complex based on dipyridine bisamide organic ligand and Keggin type polyoxometalate, its synthetic method and its application

The invention relates to a copper complex based on a dipyridine bisamide organic ligand and Keggin type polyoxometalate, its synthetic method and its application. A molecular formula is one of the following formulas: [Cu2(L<1>)3(H2O)6(SiMo12O40)].2H2O; [Cu2(L<2>)3(H2O)6(SiMo12O40)].9H2O; [Cu2(L<2>)3(H2O)6(SiW12O40)].6H2O; [Cu2(L<3>)3(H2O)6(SiMo12O40)].6H2O; [Cu2(L<3>)3(H2O)6(SiW12O40)].6H2O; wherein L<1> is N, N'-di(3- pyridylformamido)-1,2-ethane; L<2> is N, N'-di(3-pyridylformamido)-1,4-butane; L<3> is N, N'-di(3-pyridylformamido)-1,6-hexane. The method comprises the following steps: addingdeionized water in the Cu(NO3).3H2O, Keggin type polyoxometalate, dipyridine diamide organic ligand, stirring under room temperature, regulating pH value, dumping in a high pressure reaction vessel and heating, insulating under hydrothermal condition, cooling to the room temperature to obtain bulk blue green crystals, alternatively cleaning by deionized water and ethanol, naturally drying under room temperature to prepare the copper complex based on dipyridine bisamide organic ligand and Keggin type polyoxometalate. The complex has the advantages of simple synthetic method, easy crystallization, high synthesis yield, strong affinity capability to water-soluble pollutants and good catalytic degradation effect, and can be used as photocatalysis materials.
Owner:BOHAI UNIV

Ion sieve for extracting uranium from water body and preparation method thereof

The invention provides an ion sieve for extracting uranium from a water body and a preparation method thereof. The ion sieve is prepared from pyrophosphate, molybdate, zirconium oxychloride, hexadecyl trimethyl ammonium bromide, acrylonitrile, and hydroxylamine hydrochloride. The preparation method comprises the steps: preparing a hydrogen ion exchanger of zirconyl-molybdopyrophosphate polyoxometalate by using zirconium oxychloride, the molybdate and the pyrophosphate, introducing a defined amount of uranium ions to the hydrogen ion exchanger, extracting through immobilizing the uranium ions, and baking for forming; then radiating and activating, making a product obtained by radiating and activating react with hexadecyl trimethyl ammonium bromide for performing organic modification, and then adding acrylonitrile and hydroxylamine hydrochloride for performing amine oximation; finally, performing solid-liquid separation, and then performing steps of high-temperature sintering, cooling and grinding, and the like to obtain the ion sieve for extracting uranium from the water body. The prepared ion sieve has a most suitable crystal structure of receiving the uranium ions, shows an efficient selective effect, and has a chelation function and a good selectivity to the uranium ions.
Owner:INST OF NUCLEAR PHYSICS & CHEM CHINA ACADEMY OF

Preparation and catalytic performance of polyacid-based metal organic framework crystal material with intercalation structure

The invention aims to develop a polyacid-based metal organic framework crystal material with an intercalation structure, which effectively overcomes the technical bottlenecks that a simple polyacid material is wide in band gap (3 eV), can only absorb ultraviolet light, is soluble in water, and has a recover rate, and the like. Special intercalation structure characteristics of the material are utilized to improve the electron storage capacity of polyacid as an electron acceptor, accelerate the separation of catalytic photo-generated carriers, enhance the photocatalytic efficiency of a catalyst, and expand the spectral absorption range to visible light. The chemical formula of the polyacid-based metal organic framework crystal material with the intercalation structure is designed and developed as [CuI2CuII5(ptz)6(OH)2(4H2O)GeW12O40].6H2O. A method for preparing the material comprises the following steps: dissolving germanium tungstate, copper chloride and 5-(pyridine-2-yl)tetrazole organic ligand into deionized water to obtain a reaction solution, adjusting a pH value, and then reacting at a temperature of 160 DEG C for 3 days. . The metal organic framework crystal material with thepolyacid-based intercalation structure having visible light catalytic properties can be obtained.
Owner:HARBIN UNIV OF SCI & TECH

Polyoxometalate-based loading-type catalyst for oil product desulfurization and preparing method thereof

The invention discloses a polyoxometalate loading-type catalyst having the good removing effect on a sulfur-containing compound in an oil product and a preparing method thereof, and belongs to the technical field of functional materials. According to the material, amino-modified gamma-Al2O3, pseudo boehmite and SiO2-doped-type gamma-Al2O3 or one of amino-modified gamma-Al2O3, pseudo boehmite and SiO2-doped-type gamma-Al2O3 serves as a carrier, and the catalyst is prepared in the mode that polyoxometalate is loaded with the soaking method; the preparing method includes the steps that under the inert atmosphere, the carrier and an active chemical reagent containing a 3-aminopropyl group are reacted, and an amino group is bonded on the surface of the carrier in a covalent mode; the product is washed, dried and soaked in a dilute acid solution, and positive charge is loaded on the surface of the carrier accordingly; then the carrier is soaked in a polyoxometalate water solution, washed and dried, and the catalyst POMs-NH2-Al2O3 is obtained. If the catalyst is used for an oxidation sweetening reaction, the catalyst is high in catalytic oxidation efficiency, capable of being recycled and low in cost, and as the catalyst has the good mechanical performance, separating, recovering and reusing are quite convenient.
Owner:BEIJING UNIV OF CHEM TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products