Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

949 results about "Adamantane" patented technology

Adamantane is a colorless, crystalline chemical compound with a camphor-like odor. With a formula C₁₀H₁₆, it is a cycloalkane and also the simplest diamondoid. Adamantane molecules consists of three connected cyclohexane rings arranged in the "armchair" configuration. It is unique in that it is both rigid and virtually stress-free. Adamantane is the most stable among all the isomers with formula C₁₀H₁₆, which include the somewhat similar twistane. The spatial arrangement of carbon atoms in the adamantane molecule is the same as in the diamond crystal. This motivates the name adamantane, which is derived from the Greek adamantinos (relating to steel or diamond).

Ink composition, inkjet recording method, printed material, and process for producing lithographic printing plate

An ink composition is provided that includes (A) an N-vinyllactam, (B) a monomer represented by Formula (I), and (C) a radical polymerization initiator, or includes (A) an N-vinyllactam, (B) a monomer represented by Formula (II), (C) a radical polymerization initiator, and phenoxyethyl acrylate.
(In Formula (I) and Formula (II), R1 denotes a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbons, X1 denotes a divalent linking group, R2 and R3 independently denote a substituent, k denotes an integer of 1 to 6, q and r independently denote an integer of 0 to 5, n denotes a cyclic hydrocarbon structure, the cyclic hydrocarbon structure may comprise in addition to hydrocarbon bonds a carbonyl bond (—C(O)—) and/or an ester bond (—C(O)O—), and the k R1s, the k X1s, the q R2s, and the r R3s may each be identical to or different from each other; furthermore, one carbon atom in the adamantane framework in Formula (I) may be replaced by a carbonyl bond (—C(O)—) and/or an ester bond (—C(O)O—), and one carbon atom in the norbornene framework in Formula (II) may be replaced by an ether bond (—O—) and/or an ester bond (—C(O)O—).) There are also provided an inkjet recording method, a printed material, and a process for producing a lithographic printing plate that employ the ink composition.
Owner:FUJIFILM CORP

Preparation method of double-sensitivity cyclodextrin supermolecule aggregate

The invention discloses a preparation method of a double-sensitivity cyclodextrin supermolecule aggregate, belonging to the technical field of functional materials. The preparation method comprises the following steps of preparing a host molecule-photosensitive 4-hydroxycinnamic acid-cyclodextrin (4HCA-CD) by using 4-hydroxycinnamic acid (4HCA) to modify beta-cyclodextrin (beta-CD); using trithioester with adamantine (AD) at tail end as a chain transfer agent, and preparing temperature-sensitive object polymer-double-arm adamantine-poly(N-isopropyl acrylamide)-adamantine (AD-PNIPAM-AD) by using a reversible addition-fragmentation chain transfer free radical polymerization (RAFT) method; constructing a double-sensitivity supermolecule inclusion complex 4HCA-CD/AD-PNIPAM-AD by utilizing comprehensive performance of a beta-CD dewatering cavity and AD; and self-assembling the 4HCA-CD/AD-PNIPAM-AD to form the supermolecule aggregate which is capable of realizing reversible conversion in shape and size by changing light and temperature. The supermolecule aggregate prepared by the preparation method disclosed by the invention has good light/temperature double sensitivities and is capable of carrying out smart response onto external stimulus, so that the supermolecule aggregate has a wide application prospect in the fields of drug loading, controlled release, and the like.
Owner:JIANGNAN UNIV

Supramolecule assembly of targeting-delivery anticancer adamplatin and preparation of supramolecule assembly

The invention discloses a supramolecule assembly of targeting-delivery anticancer adamplatin. The supramolecule assembly is a binary supramolecule assembly which is synthesized on the basis of cyclodextrin-decorated hyaluronic acid and adamplatin. A preparation method of the supramolecule assembly is characterized in that the cyclodextrin-decorated hyaluronic acid and the adamplatin are respectively synthesized, and through the strong non-covalent interaction of cyclodextrin and adamantine and the amphiphilic action of molecules, a supermolecule nano particle which takes the hydrophilic hyaluronic acid as a shell and the adamplatin as a core is formed. The supramolecule assembly disclosed by the invention has the advantages that the supramolecule assembly of the targeting-delivery anticancer adamplatin has a simple synthetic route, is low in preparation cost and high in productivity, and is suitable for amplification synthesis and practical production application; and through endocytosis in which a malignant cell surface hyaluronic acid receptor serves as a medium, the supramolecule assembly (HAP) is brought in cancer cells in a target manner, so that the protection of normal cells and the targeting selective killing of cancer cells are realized, the anti-cancer activity is obviously improved, and toxic and side effects are obviously reduced.
Owner:NANKAI UNIV

Method for synthesizing Cu-SSZ-13 molecular sieve catalyst by one step

InactiveCN106238092AOptimizing Hydrothermal Aging PropertiesHigh solid phase yieldMolecular sieve catalystsCrystalline aluminosilicate zeolitesAlkali metalChemistry
The invention relates to a method for synthesizing Cu-SSZ-13 molecular sieve catalyst by one step. The method is characterized by comprising the following steps: (1) mixing an organic amine template agent and deionized water; adding or not adding an NaOH aqueous solution; adding Cu-TEPA clathrate, and stirring evenly; adding an aluminum source and a silicon source, and stirring until all materials are mixed evenly; (2) placing a mixed solution obtained in step (1) into a stainless reaction still with a tetrafluoroethylene or para-polyphenylene lining; crystallizing the reaction still for 12 hours to 6 days at 100 to 200 DEG C.; (3) washing a crystallized product for a plurality of times until the solution is neutral; drying the obtained solid product in a drying oven for 5 to 12 hours at 60 to 150 DEG C; heating the dried solid to 500 to 600 DEG C. and roasting for 3 to 10 hours so as to obtain the Cu-SSZ-13 molecular sieve catalyst product. By adopting the method disclosed by the invention, the use amount of the N,N,N-trimethyl-1-ammonium adamantane template agent is greatly reduced, and the alkali metal ion content of the product is controlled, so that the hydrothermal aging property of the catalyst is optimized.
Owner:WUXI WEIFU ENVIRONMENT PROTECTION CATALYST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products