Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

33 results about "Boron Hydrides" patented technology

Manufacture of silver-copper-germanium alloy

Silver alloys containing copper and germanium e.g. about 1 wt % Ge and of very low copper content e.g. about 0.8 wt % Cu can be precipitation hardened to 65 HV or above, whereas alloys of similar copper content and not containing germanium remain soft. In an embodiment, a silver alloy comprises 92.5-97 wt % Ag, 1-4.5 wt % Cu, 0.4-4 wt % Zn, 0.8-1.5 wt % Ge, 0 to 0.2 wt % Si, In or Sn and 0-0.2 wt % Mn, the balance being boron as grain refiner, incidental ingredients and impurities. The said alloy preferably comprises boron as grain refiner added as a boron hydride, e.g. sodium borohydride. A further group of alloys comprises a ternary alloy of silver, copper and germanium containing from more than 93.5 wt % to 95.5 wt % Ag, from 0.5 to 3 wt % Ge and the remainder, apart from incidental ingredients (if any), impurities and grain refiner, copper, the grain refiner being sodium borohydride or another boron hydride. Silicon-containing casting grain that gives rise to bright as-cast products is also disclosed. In a further embodiment, a zinc-containing silver alloy resistant to tarnish under severe conditions e.g. exposure to human sweat or French dressing comprises 1-5 wt % Zn, 0.7-3 wt % Cu, 0.1-3 wt % Ge, 0-0.3 wt % Mn, 0-0.25 wt % Si, B in an amount effective for grain refinement, up to 0.5 wt % incidental ingredients, the balance being Ag in an amount of 92.5-96 wt %, and impurities. A preferred manufacturing method giving an alloy with favourable physical properties involves melting together the ingredients, and incorporating boron by dispersing into molten silver alloy to foirn the whole or a precursor pait of said alloy a compound selecting fiom alkyl boron compounds, boron hydrides, boron halides, boron-containing metal hydrides, boron-containing metal halides and mixtures thereof The alloy is particularly suitable for castings which may be hardened in an oven e.g. at about 300 DEG C. for 30-45 min.
Owner:ARGENTIUM INT

Metal alloy manufacturing

InactiveUS20080069722A1Eliminates quenchingHigh silicon contentImpurityLow copper
Silver alloys containing copper and germanium e.g. about 1 wt % Ge and of very low copper content e.g. about 0.8 wt % Cu can be precipitation hardened to 65 HV or above, whereas alloys of similar copper content and not containing germanium remain soft. In an embodiment, a silver alloy comprises 92.5-97 wt % Ag, 1-4.5 wt % Cu, 0.4-4 wt % Zn, 0.8-1.5 wt % Ge, 0 to 0.2 wt % Si, In or Sn and 0-0.2 wt % Mn, the balance being boron as grain refiner, incidental ingredients and impurities. The said alloy preferably comprises boron as grain refiner added as a boron hydride, e.g. sodium borohydride. A further group of alloys comprises a ternary alloy of silver, copper and germanium containing from more than 93.5 wt % to 95.5 wt % Ag, from 0.5 to 3 wt % Ge and the remainder, apart from incidental ingredients (if any), impurities and grain refiner, copper, the grain refiner being sodium borohydride or another boron hydride. Silicon-containing casting grain that gives rise to bright as-cast products is also disclosed. In a further embodiment, a zinc-containing silver alloy resistant to tarnish under severe conditions e.g. exposure to human sweat or French dressing comprises 1-5 wt % Zn, 0.7-3 wt % Cu, 0.1-3 wt % Ge, 0-0.3 wt % Mn, 0-0.25 wt % Si, B in an amount effective for grain refinement, up to 0.5 wt % incidental ingredients, the balance being Ag in an amount of 92.5-96 wt %, and impurities. A preferred manufacturing method giving an alloy with favourable physical properties involves melting together the ingredients, and incorporating boron by dispersing into molten silver alloy to foirn the whole or a precursor pait of said alloy a compound selecting fiom alkyl boron compounds, boron hydrides, boron halides, boron-containing metal hydrides, boron-containing metal halides and mixtures thereof The alloy is particularly suitable for castings which may be hardened in an oven e.g. at about 300° C. for 30-45 min.
Owner:ARGENTIUM INT

A kind of high-dispersion ultra-small size carbon-supported noble metal catalyst and preparation method thereof

The present invention provides a high-dispersion ultra-small carbon-supported noble metal catalyst and a preparation method thereof. The preparation method includes: step S1: mixing the carbon material with a dispersion of borane hydride, wherein, in the mixed solution, the The mass ratio of the carbon material to the borolene is 1:0.01-1; then the activated carbon in the mixed solution is fully and evenly dispersed to obtain a uniform dispersion of the carbon material supported borolene; step S2: according to the The mass ratio of the carbon material to the noble metal is 1:0.001-0.5, and the aqueous solution of the noble metal precursor is added to the homogeneous dispersion of the carbon material-supported boron hydride, and the aqueous solution is fully stirred to obtain a suspension; step S3: the suspension The turbid liquid is filtered and processed to obtain the high-dispersion ultra-small carbon-supported noble metal catalyst. The preparation cost of the invention is low, the environment is friendly, the surface of the prepared noble metal catalyst particles is clean, the catalytic activity is high, the preparation method is simple, the equipment requirement is low, and industrial production is easy to realize.
Owner:XI AN JIAOTONG UNIV +1

A gallium nitride-based light-emitting diode epitaxial wafer and its preparation method

The invention discloses a gallium nitride-based light emitting diode epitaxial wafer and a preparation method thereof, and belongs to the technical field of semiconductors. The gallium nitride-based light emitting diode epitaxial wafer comprises a substrate, a buffer layer, an N-type semiconductor layer, an active layer, and a P-type semiconductor layer, and the buffer layer, the N-type semiconductor layer, the active layer, and the P-type semiconductor layer are sequentially stacked on the substrate; the active layer comprises a plurality of quantum wells and a plurality of quantum barriers,and the plurality of quantum wells and the plurality of quantum barriers are alternately stacked; and at least one boron hydride layer is inserted into the quantum barrier. According to the epitaxialwafer and the preparation method in the invention, at least one boron hydride layer is inserted into the quantum barrier, and the thermal conductivity of the boron hydride layer is good, so the heat generated by combined luminescence of electrons and holes in the active layer can be conducted out in time to prevent the junction temperature of the active layer from rising, thereby facilitating theimprovement of combined luminous efficiency of the electrons and holes, and further improving the luminous efficiency of the LED, and the gallium nitride-based light emitting diode epitaxial wafer isparticularly suitable for LEDs at a high current density.
Owner:HC SEMITEK ZHEJIANG CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products