Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3172 results about "Inorganic acids" patented technology

Inorganic acids. Inorganic acids are hazardous acids which, if ingested, can lead to death. Examples of inorganic acids: Hydrofluoric acid (HF) – It has the property of corroding the glass, being used to make recordings in crystals and glasses; Nitric acid (HNO 3 ) – Used in the manufacture of explosives such as dynamite and TNT;

Lithium Secondary Battery

A lithium secondary battery includes: an electrode body having a positive electrode, a negative electrode, and a separator, the positive electrode and the negative electrode being wound or laminated by means of the separator; and a nonaqueous electrolyte solution containing a lithium compound as a electrolyte. At least one of the positive electrode, the negative electrode, the separator, the nonaqueous electrolyte solution contains at least one of: (a) an organic and/or inorganic inhibitor, which functions as a Cu-corrosion inhibitor or a Cu-trapping agent, (b) a compound having an organic base and an inorganic acid which are unitarily combined in a molecule, (c) a cyclic compound containing a N-O radical in a molecular structure, (d) a cyclic compound which becomes a Mn<2+> supplier in the nonaqueous electrolyte solution, (e) a compound containing an atom showing Lewis acidity and an atom showing Lewis basisity in one molecule, (f) a three-dimensional siloxane compound, and (g) a nonionic surfactant; or the nonaqueous electrolyte solution contains: (h) a water-extracting agent, or (i) a hydrofluoric acid-extracting agent. This lithium secondary battery exhibits an excellent effect that self-discharge property, cycle characteristics, long period stability and reliability can be planned.
Owner:NGK INSULATORS LTD

Application of tungsten-based catalyst in lignin catalytic hydrogenation for producing aromatic compound

The invention relates to hydrocracking of lignin, and specifically relates to a method for applying a tungsten-based catalyst to catalyze lignin hydrocracking for producing an aromatic compound. The catalyst comprises a main active component of non-zero-valent tungsten, and a second metal component of a small amount of one or more transition metals selected from zero-valent nickel, cobalt, ruthenium, iridium, palladium, platinum, iron, and copper. According to the method, raw materials such as lignin, biomass hydrolysis residue, lignosulfonate, and alkaline lignin are subject to catalytic hydrogenation under a hydrothermal condition with a temperature of 120 to 450 DEG C and a hydrogen pressure of 1 to 20MPa; the raw materials are cracked into C6-C9 phenolic compounds with high selectivity. A maximal phenol yield reaches 55.6%. Compared to existing technologies, according to the invention, renewable natural biomasses are adopted as raw materials, such that the raw materials are cheap, and have wide sources; inorganic acid and alkali are not required, such the production of a large amount of alkaline solution in traditional lignin catalysis is avoided; the tungsten-based catalyst is cheap; the reaction process is green, and has atom economical characteristics.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Amido-containing ionic liquid used for absorbing acidic gases and preparation method and application thereof

The invention provides an amido-containing ionic liquid used for absorbing acidic gases and a preparation method and application thereof and in particular relates to a method for absorbing acidic gases of CO2, H2S, SO2 and the like by using an amido-containing ionic liquid. The amido-containing ionic liquid comprises one or more of primary amine, secondary amine and tertiary amine, wherein positive ions of the ionic liquid are derived from organic polyamines, negative ions of the ionic liquid are derived from inorganic acid or organic acid, and the ionic liquid is prepared by mixing the organic polyamines with the inorganic acid or organic acid and then carrying out neutralization reaction through acid and alkali. The ionic liquid has the advantages of low cost, simple preparation method,strong absorbing capability and short balance time, can be used for the enriching of acidic gases, the deacidification refining of acid-containing gases of natural gas, refinery gas, methane, coal gas, synthesis gas, coke-oven gas, pyrolysis gas, smoke, motor vehicle tail gas and the like and the purification of gases under a proper space and an operating environment; meanwhile, the ionic liquid absorbing the acidic gases can release the acidic gases through pressure reduction and temperature raise, thus the absorbing capability of the ionic liquid is restored and the multiple absorption property of the ionic liquid is better.
Owner:CHINA UNIV OF PETROLEUM (BEIJING)

Porous silicon negative material of lithium ion battery and preparation method and application of material

The invention discloses a porous silicon negative material of a lithium ion battery, and a preparation method and application of the material. The method comprises the following steps of: reacting silicon alloy powder, which is taken as a raw material, with inorganic acid to generate porous silicon particles; and washing the porous silicon particles by an HF (Hydrogen Fluoride) acid solution to eliminate surface silicon oxide, and washing and drying the washed porous silicon particles so as to obtain the porous silicon material. The porous silicon material prepared by the method has a sponge-shaped structure which is formed by linking nano silicon particles; the particle sizes of the particles of the porous silicon negative material range from 0.01 micron to 50 microns; the specific surface area of the material is 30-600cm<2>/g; the porous silicon negative material can be taken as a negative material of a lithium ion battery; and in a lithium ion battery electrolyte, the porous silicon powder shows high specific discharge capacity and charge-discharge circulation stability. The porous silicon negative material has the advantages of low cost, simplicity and convenience in method and high electrochemical property, and can be applied to production of silicon negative materials of high-performance lithium ion batteries.
Owner:SHANGHAI INST OF SPACE POWER SOURCES
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products