Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

510 results about "Buffer gas" patented technology

A buffer gas is an inert or nonflammable gas. In the Earth's atmosphere, nitrogen acts as a buffer gas. A buffer gas adds pressure to a system and controls the speed of combustion with any oxygen present. Any inert gas such as helium, neon, or argon will serve as a buffer gas.

Methods for controlling formation of deposits in a deposition system and deposition methods including the same

A method for controlling parasitic deposits in a deposition system for depositing a film on a substrate, the deposition system defining a reaction chamber for receiving the substrate and including a process gas in the reaction chamber and an interior surface contiguous with the reaction chamber, includes flowing a buffer gas between the interior surface and at least a portion of the process gas to form a gas barrier layer such that the gas barrier layer inhibits contact between the interior surface and components of the process gas.
Owner:CREE INC

Method of deposition of thin films of amorphous and crystalline microstructures based on ultrafast pulsed laser deposition

Powerful nanosecond-range lasers using low repetition rate pulsed laser deposition produce numerous macroscopic size particles and droplets, which embed in thin film coatings. This problem has been addressed by lowering the pulse energy, keeping the laser intensity optional for evaporation, so that significant numbers of the macroscopic particles and droplets are no longer present in the evaporated plume. The result is deposition of evaporated plume on a substrate to form thin film of very high surface quality. Preferably, the laser pulses have a repetition rate to produce a continuous flow of evaporated material at the substrate. Pulse-range is typically picosecond and femtosecond and repetition rate kilohertz to hundreds of megahertz. The process may be carried out in the presence of a buffer gas, which may be inert or reactive, and the increased vapour density and therefore the collision frequency between evaporated atoms leads to the formation of nanostructured materials of increasing interest, because of their peculiar structural, electronic and mechanical properties. One of these is carbon nanotubes, which is a new form of carbon belonging to the fullerene (C60) family. Carbon nanotubes are seamless, single or multishell co-axial cylindrical tubules with or without dome caps at the extremities. Typically diameters range from 1 nm to 50 nm with a length >1 mum. The electronic structure may be either metallic or semiconducting without any change in the chemical bonding or adding of dopant. In addition, the materials have application to a wide range of established thin film applications.
Owner:AUSTRALIEN NAT UNIV

Method and apparatus for ALD on a rotary susceptor

A chemical vapor deposition method and apparatus is disclosed. The process is carried out in an apparatus having a number reactive zones, each surrounded by a corresponding exhaust zone, all of which are both contained within a buffer zone. Pressure relationships are controlled such that buffer gas from the buffer zone flows into the exhaust zones and reactive gas from the reactive zones flow into the exhaust zones. As a result, cross-contamination of gases between the reactive zones is avoided.
Owner:OERLIKON ADVANCED TECH +2

Mercury-free metal halide lamp

Lighting system, comprising a mercury-free metal halide lamp with a light yield of at least 75 lm / W and a color rendition index of at least 75 and an electronic ballast, the electronic ballast impressing a square-wave power supply on the lamp and keeping the power constant. The filling comprises the following components: a buffer gas which also acts as starting gas to start the lamp, a voltage gradient generator, comprising at least one metal halide which vaporizes readily and which is chiefly (by more than 50%) responsible for generating a voltage gradient which corresponds approximately to that of mercury, and a light generator comprising one metal and / or one metal halide.
Owner:PATENT TREUHAND GESELLSCHAFT FUR ELECTRIC GLUEHLAMPEN MBH

High quality large scale single and multilayer graphene production by chemical vapor deposition

Systems and methods for synthesizing continuous graphene sheets are provided. The systems and methods include passing a catalyst substrate through a heated chemical vapor deposition chamber and exposing the substrate to a reaction gas mixture of hydrogen and hydrocarbon at a preselected location within the chamber. The reaction gas mixture can include hydrogen having a partial pressure of between about 0 Torr and 20 Torr, hydrocarbon having a partial pressure of between about 20 mTorr and about 10 Torr, and one or more buffer gases. The buffer gases can include argon or other noble gases to maintain atmospheric pressure within the chemical deposition chamber. The resulting graphene can be made with continuous mono and multilayers (up to six layers) and have single crystalline hexagonal grains with a preselected nucleation density and domain size for a range of applications.
Owner:UT BATTELLE LLC

A kind of preparation method of mems atomic vapor chamber and atomic vapor chamber

The invention relates to a preparation method for a micro-electro-mechanical system (MEMS) atomic vapor chamber and the atomic vapor chamber. The chamber is prepared by bonding a Pyrex glass sheet, a silicon wafer and a Pyrex glass sheet by an anodic bonding technology; the Pyrex glass sheet is taken as a window of the chamber; a chamber space is formed by etching or corroding the silicon wafer; paraffin packaged alkali metal such as rubidium (Rb) or cesium (Cs) is put into the chamber, and buffer gas with appropriate pressure is introduced simultaneously; paraffin is taken as a packaging material of the alkali metal, so that active alkali metal is isolated from oxidants such as oxygen, water vapor and the like in an environment; the paraffin is also used as a plating material of the chamber, so that collision between Rb or Cs atoms and a chamber wall is slowed down; and a CO2 laser is used for melting the paraffin to release the alkali metal, so that a uniform paraffin plating is formed on the chamber wall. The problem of long-term drift caused by reaction residues generated by a field preparation mode is solved, the collision between the Rb or Cs atoms and the chamber wall is slowed down, and the contrast of atomic resonance line width of the alkali metal is improved.
Owner:江苏智能微系统工业技术股份有限公司

Extreme ultraviolet light source device, laser light source device for extreme ultraviolet light source device and method for controlling saturable absorber used in extreme ultraviolet light source device

An EUV light source of the present invention is capable of using a saturable absorber stably and continuously in a high heat load state. A saturable absorber (SA) device is disposed on a laser beam line to absorb feeble light, such as self-excited oscillation light, parasitic oscillation light or return light. SA gas from an SA gas cylinder and buffer gas from a buffer gas cylinder are mixed to be a mixed gas. The mixed gas is supplied to an SA gas cell via a supply pipeline, and absorbs the feeble light included in the laser beam. The mixed gas is exhausted via an exhaust pipeline, and is sent to a heat exchanger. The mixed gas, cooled down by a heat exchanger, is sent back to the SA gas cell by a circulation pump.
Owner:GIGAPHOTON

Method and apparatus for ion mobility spectrometry with alignment of dipole direction (IMS-ADD)

Techniques and instrumentation are described for analyses of substances, including complex samples / mixtures that require separation prior to characterization of individual components. A method is disclosed for separation of ion mixtures and identification of ions, including protein and other macromolecular ions and their different structural isomers. Analyte ions are not free to rotate during the separation, but are substantially oriented with respect to the drift direction. Alignment is achieved by applying, at a particular angle to the drift field, a much stronger alternating electric field that “locks” the ion dipoles with moments exceeding a certain value. That value depends on the buffer gas composition, pressure, and temperature, but may be as low as ˜3 Debye under certain conditions. The presently disclosed method measures the direction-specific cross-sections that provide the structural information complementing that obtained from known methods, and, when coupled to those methods, increases the total peak capacity and specificity of gas-phase separations. Simultaneous 2-D separations by direction-specific cross sections along and orthogonally to the ion dipole direction are also possible.
Owner:BATTELLE MEMORIAL INST

Mercury-free metal halide lamp

Mercury-free metal halide lamp with a warm white luminous color, the fill of which comprises the following components: an inert gas which acts as a buffer gas; a first group of metal halides (MH), the boiling point of which is above 1000° C. (preferably above 1150° C.), the first group comprising at least Dy and Ca used simultaneously as metals, and the molar ratio of the two metal halides Ca-MH:Dy-MH being between 0.1 and 10; these are components with a low volatility which are present in saturated form; a second group of metal halides, the boiling point of which is below 1000° C. (preferably below 900° C.), the second group comprising at least one of the elements In, Zn, Hf, Zr as metals; these are volatile components which are mostly present in unsaturated form; the total fill quantity of the first group of metal halides being between 5 and 100 mumol / cm3; the total fill quantity of the second group of metal halides being between 1 and 50 mumol / cm3; and the color temperature being between 2700 and 3500 K; the general color rendering index being at least Ra=90, while at the same time the red rendering index is at least R9=60.
Owner:PATENT TREUHAND GESELLSCHAFT FUR ELECTRIC GLUEHLAMPEN MBH

Metal halide discharge lamp, lighting device for metal halide discharge lamp, and illuminating apparatus using metal halide discharge lamp

Disclosed is a metal halide discharge lamp which essentially permits disusing mercury. The metal halide discharge lamp comprises a refractory and transparent hermetic vessel, a pair of electrodes fixed to the hermetic vessel, and a discharge medium sealed in the hermetic vessel and containing a first halide, a second halide and a rare gas, the first halide being a halide of a metal which achieves a desired light emission, the second halide having a relatively high vapor pressure, being at least one halide of a metal which is unlikely to emit a visible light compared with the metal of the first halide, and acting as a buffer gas.
Owner:HARISON TOSHIBA LIGHTING CORP

LNG receiving terminal that primarily uses compensated salt cavern storage and method of use

In the past, “compensated” salt caverns have operated with a compensating liquid, such as brine to displace a stored liquid, such as crude oil, when the stored liquid is needed on the surface. Virtually all of the stored liquid in a compensated salt cavern can be expelled from the salt cavern when it is filled with the compensating liquid. In the past, “uncompensated” salt caverns have been used to store gases, such as natural gas. Uncompensated caverns operate without any compensating liquid; instead they rely on pressure. Some of the stored gas (cushion gas) must always be left in an uncompensated salt cavern. This invention breaks with convention and uses a compensating liquid in a salt cavern to store gases which is a technique believed to be previously unknown. “Cushion gas” is not required because the compensating liquid displaces virtually all of the gas in the salt cavern.
Owner:CONVERSION GAS IMPORTS

Method and apparatus for carbon allotropes synthesis

A method and apparatus for synthesis of fullerenes and nanotubes in large quantities at an economical cost from graphite in electric arc plasma process are presented. Different embodiments of channeled graphite electrodes for both direct current (DC) and alternative current (AC) processes are disclosed. High productivity of the carbon allotropes is achieved by feeding consumable graphitic electrode into hot plasma zone, injecting of feedstock, catalyst and buffer gas flow through the longitudinal inner channel electrodes into the hot plasma zone and creating the radial gas outflow in the gap between electrodes, and following removal of produced carbon and catalytic vapors from the hot plasma zone into an oxygen deprived reaction vessel for quenching and condensing. Deposited after condensation soot containing carbon allotropes is collected and carbon allotropes are recovered by known techniques. The final products of recovering are fullerenes C60, C70 and higher fullerenes or nanotubes.
Owner:DUBROVSKY ROMAN +1

Groove type atomic gas cavity and atomic clock physical system formed by same

The invention relates to a groove type atomic gas cavity produced by applying MEMS technology and an atomic clock physical system formed by the same. The cavity is characterized in that the cavity is formed in such a manner that a silicon wafer with a groove and Pyrex glass sheets define a cavity structure through bonding; the cavity structure is used for alkali metal atom vapor and buffer gases to fill in; the cross section of the groove is in a shape of inverted trapezoid; and the groove comprises a bottom surface and side walls forming included angles with the bottom surface. The cavity is manufactured based on MEMS (micro-electro-mechanical system) technology. The silicon groove is formed through anisotropic etching of the (100) monocrystalline wafer. The groove type cavity is manufactured through silicon-glass anode bonding. The side walls of the cavity are {111} crystal planes of the silicon wafer. The cavity and the system have the following beneficial effects: by utilizing the cavity, the distance between two reflectors in the cavity is easy to enlarge through atomic cavity dimension design, thus increasing the length of the interaction space between laser and atomic gas, enhancing the signal to noise ratio of the CPT (coherent population trapping) signal and being beneficial to improvement of the frequency stability of the micro CPT atomic clock.
Owner:SHANGHAI INST OF MICROSYSTEM & INFORMATION TECH CHINESE ACAD OF SCI

Constant volume combustor

A pressure wave apparatus utilizing the principles of pulsed detonation and wave rotor technologies. The apparatus includes inlet and outlet ports that interface with a plurality of fluid flow passageways on a rotor. A buffer gas is routed through some of the inlet and outlet ports and into and out of the plurality of fluid flow passageways. One of the inlet ports is a buffer gas inlet port that when placed in registry with a fluid flow passageway allows the flow of buffer gas into the respective passageway. Fuel is delivered into the buffer gas proximate the buffer gas inlet port so that only a portion of the buffer gas inlet port receives any fuel.
Owner:ROLLS ROYCE NORTH AMERICAN TECH

Arrangement for providing a reproducible target flow for the energy beam-induced generation of short-wavelength electromagnetic radiation

The invention is directed to an arrangement for providing a reproducible target flow for the energy beam-induced generation of short-wavelength radiation. It is the object of the invention to find a novel possibility for providing a reproducibly supplied target flow for the generation of a plasma that emits short-wavelength radiation which ensures a high directional stability of the target flow over a large number of individual plasma generation process for any target materials under given process conditions. According to the invention, this object is met in that a nozzle protection device is provided in the interaction chamber between the target nozzle and the interaction point for the generation of the plasma, and the nozzle protection device contains a gas pressure chamber which has an aperture along the target path for unobstructed passage of the target flow and which is filled with a buffer gas that is maintained at a pressure of some 10 mbar.
Owner:USHIO DENKI KK

LNG receiving terminal that primarily uses compensated salt cavern storage and method of use

In the past, “compensated” salt caverns have operated with a compensating liquid, such as brine to displace a stored liquid, such as crude oil, when the stored liquid is needed on the surface. Virtually all of the stored liquid in a compensated salt cavern can be expelled from the salt cavern when it is filled with the compensating liquid. In the past, “uncompensated” salt caverns have been used to store gases, such as natural gas. Uncompensated caverns operate without any compensating liquid; instead they rely on pressure. Some of the stored gas (cushion gas) must always be left in an uncompensated salt cavern. This invention breaks with convention and uses a compensating liquid in a salt cavern to store gases which is a technique believed to be previously unknown. “Cushion gas” is not required because the compensating liquid displaces virtually all of the gas in the salt cavern.
Owner:CONVERSION GAS IMPORTS

Meted hyperpolarized noble gas dispensing methods and associated devices

Methods of extracting and removing hyperpolarized gas from a container include introducing an extraction fluid into the container to force the hyperpolarized gas out of an exit port. The hyperpolarized gas is forced out of the container separate and apart from the extraction fluid. Alternatively, if the fluid is a gas, a portion of the gas is mixed with the hyperpolarized gas to form a sterile mixed fluid product suitable for introduction to a patient. An additional method includes engaging a gas transfer source such as a syringe to a transport container and pulling a quantity of the hyperpolarized gas out of the container in a controlled manner. Alternatively, one or more gas syringes can be employed to mete out predictable quantities of hyperpolarized gas or gas mixtures including quantities of buffer gases. Another method includes introducing a quantity of liquid into a container and covering at least one predetermined internal surface or component with the liquid to mask the surfaces and keep the hyperpolarized gas away from the predetermined internal surface, thereby inhibiting any depolarizing affect from same. Examples of surfaces or components suitable for masking include valves, seals, and the like. Yet another extraction method includes expanding a resilient member inside the container to force the hyperpolarized gas to exit therefrom. Containers include a resilient member positioned in fluid communication with the hyperpolarized gas in the container. An additional container includes inlet and outlet ports in fluid communication with the chamber and positioned on opposing sides or end portions of the container. Another container includes a port configured to receive a portion of a syringe therein. An additional aspect of the disclosure relates to calibration methods and apparatus for identifying the hyperpolarization status of the gas.
Owner:POLAREAN

Discharge produced plasma EUV light source

An DPP EUV source is disclosed which may comprise a debris mitigation apparatus employing a metal halogen gas producing a metal halide from debris exiting the plasma. The EUV source may have a debris shield that may comprise a plurality of curvilinear shield members having inner and outer surfaces connected by light passages aligned to a focal point, which shield members may be alternated with open spaces between them and may have surfaces that form a circle in one axis of rotation and an ellipse in another. The electrodes may be supplied with a discharge pulse shaped to produce a modest current during the axial run out phase of the discharge and a peak occurring during the radial compression phase of the discharge. The light source may comprise a turbomolecular pump having an inlet connected to the generation chamber and operable to preferentially pump more of the source gas than the buffer gas from the chamber. The source may comprise a tuned electrically conductive electrode comprising: a differentially doped ceramic material doped in a first region to at least select electrical conductivity and in a second region at least to select thermal conductivity. The first region may be at or near the outer surface of the electrode structure and the ceramic material may be SiC or alumina and the dopant is BN or a metal oxide, including SiO or TiO2. The source may comprise a moveable electrode assembly mount operative to move the electrode assembly mount from a replacement position to an operating position, with the moveable mount on a bellows. The source may have a temperature control mechanism operatively connected to the collector and operative to regulate the temperature of the respective shell members to maintain a temperature related geometry optimizing the glancing angle of incidence reflections from the respective shell members, or a mechanical positioner to position the shell members. The shells may be biased with a voltage. The debris shield may be fabricated using off focus laser radiation. The anode may be cooled with a hollow interior defining two coolant passages or porous metal defining the passages. The debris shield may be formed of pluralities of large, intermediate and small fins attached either to a mounting ring or hub or to each other with interlocking tabs that provide uniform separation and strengthening and do not block any significant amount of light.
Owner:ASML NETHERLANDS BV +1

Lanthanide oxide as an oxygen dispenser in a metal halide lamp

A lamp includes a discharge vessel. Tungsten electrodes extend into the discharge vessel. An ionizable fill is sealed within the vessel. The fill includes a buffer gas and a halide component that includes a rare earth halide. A source of oxygen which includes a lanthanide oxide is present in the discharge vessel. The source of oxygen provides oxygen for a regenerative cycle which reduces blackening of the lamp walls by tungsten from the electrodes.
Owner:GENERAL ELECTRIC CO

Mass spectrometer

An ion mass spectrometer comprising an ionization source for generating ions, a linear trap region for accumulation and dissociation of ions, and a time-of-flight mass spectrometer for mass spectroscopy of ions based on the flying time, and having a collision damping region introduced with a buffer gas for reducing the kinetic energy of ions ejected from the linear trap region and converting the ion packet into continuous beam and provided with plural electrodes for generating multipole electric fields in the inside between the linear trap region and the time-of-flight mass spectrometer, and having an ion transmission control mechanism for allowing or inhibiting incidence of ion from the linear trap region to the collision damping region between the linear trap region and the collision damping region.
Owner:HITACHI HIGH-TECH CORP

Resonator arrangement for bandwidth control

A line-narrowed excimer or molecular fluorine laser system includes a discharge chamber filled with a gas mixture at least including molecular fluorine and a buffer gas, multiple electrodes within the discharge chamber connected to a discharge circuit for energizing the gas mixture, a resonator including a pair of resonator reflecting surfaces disposed on either side of the discharge chamber for generating a laser beam, and a line-narrowing / selection unit within the resonator for narrowing the bandwidth of the laser beam. The resonator further includes a third reflecting surface which is deformable and disposed between the pair of resonator reflecting surfaces. The line-narrowing / selection unit preferably includes a beam expander and a dispersive element, wherein the deformable third reflecting surface is disposed between the beam expander and the dispersive element.
Owner:COHERENT GMBH

Real-time airborne particle analyzer

InactiveUS20100252731A1Reduces electrical charge distribution and speedTime-of-flight spectrometersSamples introduction/extractionMass analyzerIsotope
An aerosol particle analyzer includes a laser ablation chamber, a gas-filled conduit, and a mass spectrometer. The laser ablation chamber can be operated at a low pressure, which can be from 0.1 mTorr to 30 mTorr. The ablated ions are transferred into a gas-filled conduit. The gas-filled conduit reduces the electrical charge and the speed of ablated ions as they collide and mix with buffer gases in the gas-filled conduit. Preferably, the gas filled-conduit includes an electromagnetic multipole structure that collimates the nascent ions into a beam, which is guided into the mass spectrometer. Because the gas-filled conduit allows storage of vast quantities of the ions from the ablated particles, the ions from a single ablated particle can be analyzed multiple times and by a variety of techniques to supply statistically meaningful analysis of composition and isotope ratios.
Owner:UT BATTELLE LLC

Portable device for pulmonary cancer diagnosis

The invention provides a portable device for diagnosis of lung cancer, which comprises a balloon, a gas pump, a buffer gas chamber, a reaction gas chamber, an image collection and processing system and a control system; the balloon collects exhaled gas of a patient with suspected lung cancer to carry out the reaction with a pre-designed porphyrin sensor array (the sensor array for detecting lung cancer markers, if the lung cancer markers exist, the color of the sensor array is changed before and after the reaction) in the reaction gas chamber, the collection of images before and after the reaction is realized by controlling the image collection and processing system through the control system, the images are compared, the collected images are carried out with the pretreatment to obtain the differential images before and after the reaction, the differential images are further compared with data in an expert lesion database to obtain the detection result, and the detection result is finally displayed through a liquid crystal screen or a micro-printer, thereby judging whether the patient suffers from the lung cancer or not.
Owner:CHONGQING UNIV

Efficient method and apparatus for generating singlet delta oxygen at an elevated pressure

An improved singlet delta oxygen generator (SOG) and method of its use are disclosed. The improved SOG is compact and scalable, capable of operating in a zero-gravity or low gravity environment, requires no gaseous diluent or buffer gas, and is capable of operating at pressures as high as one atmosphere. The improved SOG also efficiently utilizes the reactants and produces a O2(1Δ) stream that is largely free of chlorine and water vapor contamination and therefore does not require a BHP regeneration system or a water vapor trap. When used as part of a COIL system, the SOG may be part of a plenum that directly feeds the laser's nozzle. The close proximity of the SOG to the laser cavity allows operation of the SOG at higher pressures without significant depletion of available O2(1Δ) through collisional deactivation.
Owner:KSY CORP

Lithographic apparatus and device manufacturing method

A lithographic apparatus includes a first space containing a plasma source and also containing a source gas which may have a high absorption of radiation at the wavelength of the projection beam of the apparatus, this gas being restricted from entering the remainder of the lithographic system by a second space containing a buffer gas having a low absorption at the wavelength of the projection beam of the apparatus. The pressure of the buffer gas is lower than or equal to that of the source gas.
Owner:ASML NETHERLANDS BV

Lithographic apparatus and device manufacturing method

A lithographic apparatus includes a first space containing a plasma source and also containing a source gas which may have a high absorption of radiation at the wavelength of the projection beam of the apparatus, this gas being restricted from entering the remainder of the lithographic system by a second space containing a buffer gas having a low absorption at the wavelength of the projection beam of the apparatus. The pressure of the buffer gas is lower than or equal to that of the source gas.
Owner:ASML NETHERLANDS BV

Method and arrangement for the suppression of debris in the generation of short-wavelength radiation based on a plasma

The invention is directed to a method and arrangements for the suppression of debris in short-wavelength radiation sources based on a plasma, particularly for EUV sources for semiconductor lithography. The object of the invention is to find a novel possibility for suppressing the particle flow (debris) from a plasma which keeps the debris away from primarily optical components located downstream without excessive attenuation of the desired radiation emitted from the plasma. According to the invention, this object is met in that a buffer gas is injected inside the filter structure of the debris filter lateral to openings that are provided for passing the radiation. The filter structure generates a flow resistance in direction of the plasma and in direction of propagation of the radiation so that an increased gas pressure of buffer gas remains limited to a defined volume layer in the debris filter relative to the pressure in the vacuum chamber, and the buffer gas exiting from the filter structure of the debris filter is sucked out of the vacuum chamber by vacuum pumps.
Owner:USHIO DENKI KK

Micro-machined vapor cell

The invention concerns a micro-machined vapor cell comprising a central silicon element forming a cavity containing vapor cell reactants such as alkali metal or alkali metal azide, buffer gas(es), and / or anti relaxation coating(s); a first and a second glass caps sealing the cavity; and a solenoid arranged to provide a homogeneous magnetic field to said vapor cell. The solenoid is coiled directly on the central silicon element of the vapor cell. This invention is an improvement for the highly miniaturized atomic clocks developments.
Owner:CSEM CENT SUISSE DELECTRONIQUE & DE MICROTECHNIQUE SA RECH & DEV

Mercury-free metal halide lamp with a fill containing halides of hafnium or zirconium

A mercury-free metal halide lamp with a light efficiency of at least 70 Im / W and a color rendering index of at least 80 has a ceramic discharge vessel, into which electrodes are introduced in a vacuum-tight manner. The fill comprises the following components: an inert gas which acts as buffer gas, a compound of a halogen X with at least one of the metals hafnium and / or zirconium (referred to below as metal halide HZM), this halide being referred to below as HZH for short, HZH simultaneously performing tasks of voltage gradient formation and of promoting the cycle, a light generator comprising at least a further metal halide, at least one further metal halide MYn which vaporizes readily and is used as voltage gradient generator, the specific molar content of HZH being greater than or equal to 3 mumol / cm3. In addition, the following relationship applies: 5<=(X+Y) / HZM<=15, resulting in a lamp service life of more than 5000 hours.
Owner:OSRAM SYLVANIA INC

Methods for controlling formation of deposits in a deposition system and deposition methods including the same

A method for controlling parasitic deposits in a deposition system for depositing a film on a substrate, the deposition system defining a reaction chamber for receiving the substrate and including a process gas in the reaction chamber and an interior surface contiguous with the reaction chamber, includes flowing a buffer gas between the interior surface and at least a portion of the process gas to form a gas barrier layer such that the gas barrier layer inhibits contact between the interior surface and components of the process gas.
Owner:CREE INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products