Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

507 results about "Buffer gas" patented technology

A buffer gas is an inert or nonflammable gas. In the Earth's atmosphere, nitrogen acts as a buffer gas. A buffer gas adds pressure to a system and controls the speed of combustion with any oxygen present. Any inert gas such as helium, neon, or argon will serve as a buffer gas.

Method of deposition of thin films of amorphous and crystalline microstructures based on ultrafast pulsed laser deposition

Powerful nanosecond-range lasers using low repetition rate pulsed laser deposition produce numerous macroscopic size particles and droplets, which embed in thin film coatings. This problem has been addressed by lowering the pulse energy, keeping the laser intensity optional for evaporation, so that significant numbers of the macroscopic particles and droplets are no longer present in the evaporated plume. The result is deposition of evaporated plume on a substrate to form thin film of very high surface quality. Preferably, the laser pulses have a repetition rate to produce a continuous flow of evaporated material at the substrate. Pulse-range is typically picosecond and femtosecond and repetition rate kilohertz to hundreds of megahertz. The process may be carried out in the presence of a buffer gas, which may be inert or reactive, and the increased vapour density and therefore the collision frequency between evaporated atoms leads to the formation of nanostructured materials of increasing interest, because of their peculiar structural, electronic and mechanical properties. One of these is carbon nanotubes, which is a new form of carbon belonging to the fullerene (C60) family. Carbon nanotubes are seamless, single or multishell co-axial cylindrical tubules with or without dome caps at the extremities. Typically diameters range from 1 nm to 50 nm with a length >1 mum. The electronic structure may be either metallic or semiconducting without any change in the chemical bonding or adding of dopant. In addition, the materials have application to a wide range of established thin film applications.
Owner:AUSTRALIEN NAT UNIV

A kind of preparation method of mems atomic vapor chamber and atomic vapor chamber

The invention relates to a preparation method for a micro-electro-mechanical system (MEMS) atomic vapor chamber and the atomic vapor chamber. The chamber is prepared by bonding a Pyrex glass sheet, a silicon wafer and a Pyrex glass sheet by an anodic bonding technology; the Pyrex glass sheet is taken as a window of the chamber; a chamber space is formed by etching or corroding the silicon wafer; paraffin packaged alkali metal such as rubidium (Rb) or cesium (Cs) is put into the chamber, and buffer gas with appropriate pressure is introduced simultaneously; paraffin is taken as a packaging material of the alkali metal, so that active alkali metal is isolated from oxidants such as oxygen, water vapor and the like in an environment; the paraffin is also used as a plating material of the chamber, so that collision between Rb or Cs atoms and a chamber wall is slowed down; and a CO2 laser is used for melting the paraffin to release the alkali metal, so that a uniform paraffin plating is formed on the chamber wall. The problem of long-term drift caused by reaction residues generated by a field preparation mode is solved, the collision between the Rb or Cs atoms and the chamber wall is slowed down, and the contrast of atomic resonance line width of the alkali metal is improved.
Owner:江苏智能微系统工业技术股份有限公司

Groove type atomic gas cavity and atomic clock physical system formed by same

The invention relates to a groove type atomic gas cavity produced by applying MEMS technology and an atomic clock physical system formed by the same. The cavity is characterized in that the cavity is formed in such a manner that a silicon wafer with a groove and Pyrex glass sheets define a cavity structure through bonding; the cavity structure is used for alkali metal atom vapor and buffer gases to fill in; the cross section of the groove is in a shape of inverted trapezoid; and the groove comprises a bottom surface and side walls forming included angles with the bottom surface. The cavity is manufactured based on MEMS (micro-electro-mechanical system) technology. The silicon groove is formed through anisotropic etching of the (100) monocrystalline wafer. The groove type cavity is manufactured through silicon-glass anode bonding. The side walls of the cavity are {111} crystal planes of the silicon wafer. The cavity and the system have the following beneficial effects: by utilizing the cavity, the distance between two reflectors in the cavity is easy to enlarge through atomic cavity dimension design, thus increasing the length of the interaction space between laser and atomic gas, enhancing the signal to noise ratio of the CPT (coherent population trapping) signal and being beneficial to improvement of the frequency stability of the micro CPT atomic clock.
Owner:SHANGHAI INST OF MICROSYSTEM & INFORMATION TECH CHINESE ACAD OF SCI

Meted hyperpolarized noble gas dispensing methods and associated devices

Methods of extracting and removing hyperpolarized gas from a container include introducing an extraction fluid into the container to force the hyperpolarized gas out of an exit port. The hyperpolarized gas is forced out of the container separate and apart from the extraction fluid. Alternatively, if the fluid is a gas, a portion of the gas is mixed with the hyperpolarized gas to form a sterile mixed fluid product suitable for introduction to a patient. An additional method includes engaging a gas transfer source such as a syringe to a transport container and pulling a quantity of the hyperpolarized gas out of the container in a controlled manner. Alternatively, one or more gas syringes can be employed to mete out predictable quantities of hyperpolarized gas or gas mixtures including quantities of buffer gases. Another method includes introducing a quantity of liquid into a container and covering at least one predetermined internal surface or component with the liquid to mask the surfaces and keep the hyperpolarized gas away from the predetermined internal surface, thereby inhibiting any depolarizing affect from same. Examples of surfaces or components suitable for masking include valves, seals, and the like. Yet another extraction method includes expanding a resilient member inside the container to force the hyperpolarized gas to exit therefrom. Containers include a resilient member positioned in fluid communication with the hyperpolarized gas in the container. An additional container includes inlet and outlet ports in fluid communication with the chamber and positioned on opposing sides or end portions of the container. Another container includes a port configured to receive a portion of a syringe therein. An additional aspect of the disclosure relates to calibration methods and apparatus for identifying the hyperpolarization status of the gas.
Owner:POLAREAN

Discharge produced plasma EUV light source

An DPP EUV source is disclosed which may comprise a debris mitigation apparatus employing a metal halogen gas producing a metal halide from debris exiting the plasma. The EUV source may have a debris shield that may comprise a plurality of curvilinear shield members having inner and outer surfaces connected by light passages aligned to a focal point, which shield members may be alternated with open spaces between them and may have surfaces that form a circle in one axis of rotation and an ellipse in another. The electrodes may be supplied with a discharge pulse shaped to produce a modest current during the axial run out phase of the discharge and a peak occurring during the radial compression phase of the discharge. The light source may comprise a turbomolecular pump having an inlet connected to the generation chamber and operable to preferentially pump more of the source gas than the buffer gas from the chamber. The source may comprise a tuned electrically conductive electrode comprising: a differentially doped ceramic material doped in a first region to at least select electrical conductivity and in a second region at least to select thermal conductivity. The first region may be at or near the outer surface of the electrode structure and the ceramic material may be SiC or alumina and the dopant is BN or a metal oxide, including SiO or TiO2. The source may comprise a moveable electrode assembly mount operative to move the electrode assembly mount from a replacement position to an operating position, with the moveable mount on a bellows. The source may have a temperature control mechanism operatively connected to the collector and operative to regulate the temperature of the respective shell members to maintain a temperature related geometry optimizing the glancing angle of incidence reflections from the respective shell members, or a mechanical positioner to position the shell members. The shells may be biased with a voltage. The debris shield may be fabricated using off focus laser radiation. The anode may be cooled with a hollow interior defining two coolant passages or porous metal defining the passages. The debris shield may be formed of pluralities of large, intermediate and small fins attached either to a mounting ring or hub or to each other with interlocking tabs that provide uniform separation and strengthening and do not block any significant amount of light.
Owner:ASML NETHERLANDS BV +1

Single-particle high-speed drop generator

The invention relates to a single-particle high-speed drop generator and belongs to the field of instruments and meters. In the invention, a buffer gas water storehouse is connected to a drop generator by virtue of a liquid pipe; a liquid outlet is arranged at the bottom centre of a liquid storage storehouse of the drop generator; liquid guide channels are arranged on the centre axes of an annular piezoelectric ceramic chip, an annular insulation gasket and a conical amplitude transformer below the liquid storage storehouse; a deflection electric field board I is symmetrically arranged below a charged ring in a drop parameter adjusting device; and a liquid collecting slot is arranged below the deflection electric field board I. The single-particle high-speed drop generator related by the invention can be used for precisely determining various parameters, and generating the needed drops stably and continuously. An electron gun is arranged below the liquid collecting slot; two annular accelerating electric field boards are arranged below the electron gun, so that the drops have a desired initial speed; and a deflection electric field board II is arranged below the annular accelerating electric field boards, so that the deflection direction required by the drops can be achieved. The device has the characteristics of safe electric signals, extreme low energy consumption, simplicity in operation and convenience for use.
Owner:INNER MONGOLIA UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products