Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

42 results about "Drift field" patented technology

Phosphoric diffusion technology for metallurgical-grade polysilicon solar cells

The invention relates to diffusion technology for manufacturing solar cells, in particular to phosphoric diffusion technology for metallurgical-grade polysilicon solar cells. The technology comprises the following steps: firstly, performing high temperature grain boundary gettering, wherein high temperature is used to make impurity atoms released at the prior settling position and simultaneously diffused and move to the position of a grain boundary defect to settle to form a clean area near the grain boundary; secondly, performing medium-low temperature phosphoric deposition, wherein diffusion deposition of fresh phosphorus is performed for a short time at a medium low diffusion temperature to finish surface low concentration phosphorus deposition to prepare for long time high temperature drive-in in a next step; thirdly, performing diffusion passivation of high temperature deep grain boundary, wherein high temperature long time phosphoric source drive-in is performed to form deep PN junction at the position of the grain boundary so as to make phosphor generate phosphoric gettering and passivation of phosphoric drift field at the position of the grain boundary; and finally, performing the diffusion again for adjusting to a needed sheet resistance value. The technology greatly reduces the composite of minority carrier originally happening in the position of the grain boundary by utilizing the properties of the diffusion of impurities in the polycrystalline silicon; and after the process is finished, the minority carrier lifetime of a silicon chip is improved compared with that of a silicon clip produced by a normal process, which has an active effect on the final performance of the cells.
Owner:TRINA SOLAR CO LTD

Demodulation Pixel with Daisy Chain Charge Storage Sites and Method of Operation Therefor

A demodulation pixel architecture allows for demodulating an incoming modulated electromagnetic wave, normally visible or infrared light. It is based on a charge coupled device (CCD) line connected to a drift field structure. The drift field is exposed to the incoming light. It collects the generated charge and forces it to move to the pick-up point. At this pick-up point, the CCD element samples the charge for a given time and then shifts the charge packets further on in the daisy chain. After a certain amount of shifts, the multiple charge packets are stored in so-called integration gates, in a preferred embodiment. The number of integration gates gives the number of simultaneously available taps. When the cycle is repeated several times, the charge is accumulated in the integration gates and thus the signal-to-noise ratio increases. The architecture is flexible in the number of taps. A dump node can be attached to the CCD line for dumping charge with the same speed as the samples are taken. Different implementations are described herein, which allow for smaller design or faster speed. The pixel structure can be exploited for e.g. 3D time-of-flight imaging. Both heterodyne and homodyne measurements are possible. Due to the highly-efficient charge transport enabled by static drift fields in the photo-sensitive region and small-sized gates in the CCD chain, high frequency bandwidth from just a few Hertz (Hz) up to greater GHz is supported. Thus, the pixel allows for highly-accurate optical distance measurements. Another possible application of this pixel architecture is fluorescence lifetime imaging microscopy (FLIM), where short laser pulses for triggering the fluorescence have to be suppressed.
Owner:AMS SENSORS SINGAPORE PTE LTD

Demodulation pixel with daisy chain charge storage sites and method of operation therefor

ActiveUS8760549B2Reduce mismatchMismatch between samples is strongly reducedTelevision system detailsWave based measurement systemsEngineeringHertz
A demodulation pixel architecture allows for demodulating an incoming modulated electromagnetic wave, normally visible or infrared light. It is based on a charge coupled device (CCD) line connected to a drift field structure. The drift field is exposed to the incoming light. It collects the generated charge and forces it to move to the pick-up point. At this pick-up point, the CCD element samples the charge for a given time and then shifts the charge packets further on in the daisy chain. After a certain amount of shifts, the multiple charge packets are stored in so-called integration gates, in a preferred embodiment. The number of integration gates gives the number of simultaneously available taps. When the cycle is repeated several times, the charge is accumulated in the integration gates and thus the signal-to-noise ratio increases. The architecture is flexible in the number of taps. A dump node can be attached to the CCD line for dumping charge with the same speed as the samples are taken. Different implementations are described herein, which allow for smaller design or faster speed. The pixel structure can be exploited for e.g. 3D time-of-flight imaging. Both heterodyne and homodyne measurements are possible. Due to the highly-efficient charge transport enabled by static drift fields in the photo-sensitive region and small-sized gates in the CCD chain, high frequency bandwidth from just a few Hertz (Hz) up to greater GHz is supported. Thus, the pixel allows for highly-accurate optical distance measurements. Another possible application of this pixel architecture is fluorescence lifetime imaging microscopy (FLIM), where short laser pulses for triggering the fluorescence have to be suppressed.
Owner:AMS SENSORS SINGAPORE PTE LTD

Electro beam ejection restraint method and device under strong magnetic field

The invention discloses an electro beam ejection restraint method and device under a strong magnetic field. The method comprises the following steps: an electric field is additionally arranged in a magnetic field and forms a potential trap configuration along the direction of the magnetic field, a drifting field is formed in a direction vertical to the magnetic field, and in the potential trap, an electro beam does reciprocating movement along the direction of a magnetic line under the action of electric field force component, and traverses the magnetic line at drifting speed of the electric field in direction vertical to the magnetic line. The device comprises a cathode plate, an anode plate, a cathode, and a first and second trap pole plate. In the method, through restraint of the potential trap, the electron beam is restrained effectively in a direction parallel to the magnetic field and traverses the magnetic field at the drifting speed of the electric field. For the device, after the cathode generates the electro beam, the electron beam is well restrained in a direction parallel to the magnetic field and traverses the magnetic without drift along the magnetic line and influence on the original magnetic field configuration, so that the ejection efficiency is high, and the process is simply and feasibly realized.
Owner:HUAZHONG UNIV OF SCI & TECH

Ion mobility spectrometer device with embedded faims cells

A tandem instrument using a variable frequency pulsed ionization source and two separation techniques, low (IMS) and high (FAIMS) field mobility is provided. The analytical stage features a field driven FAIMS cell (1020) embedded on-axis within the IMS drift tube (1012). The FAIMS cell includes two parallel grids of approximately the same diameter as the IMS rings and can be placed anywhere along the drift tube and biased according to their location in the voltage divider ladder to create the same IMS field. The spacing between the grids constitutes the analytical gap where ions are subject, in addition to the drift field, to the asymmetric dispersive field of the FAIMS. The oscillatory motion performed during the high and low voltages of the asymmetric waveform separates the ions according to the difference in their mobilities. Using combined orthogonal techniques, such as low (IMS) and high (FAIMS) field mobility techniques, offers several advantages to ion detection and analysis techniques including low cost, no vacuum required, and the generation of 2-D spectra for enhanced detection and identification. Two analytical devices may be operated in different modes, which results in overall flexibility by adapting the hyphenated instrument to the application's requirements. With the IMS-FAIMS hardware level flexibility, the instruments may be configured and optimized to exploit different trade-offs suitable for a variety of detection scenarios of for different lists of target compounds.
Owner:IMPLANT SCI

Solar cell

The embodiment of the invention provides a solar cell. The solar cell comprises a bottom cell, a first tunneling junction layer, a back reflection layer, a middle cell, a second tunneling junction layer and a top cell, wherein the top cell comprises a top cell back field layer, a top cell base region, a top cell emitter region and a top cell window layer; the top cell back field layer comprises afirst back field layer and a second back field layer which are stacked. The band gaps of the first back field layer and the second back field layer are higher than the band gap of the top cell base region, so the reflection effect of photon-generated carriers is effectively exerted, the photon-generated carriers are transmitted to the top cell emitter region, and the collection efficiency of photon-generated carriers is improved. Moreover, the P-type doping concentration of the second back field layer is greater than the P-type doping concentration of the first back field layer and the top cell base region, so the resistivity of the top cell is effectively reduced, a drift field beneficial to photon-generated carrier collection is formed, the service life of minority carriers (namely electrons) can be prolonged, the short-circuit current density of the cell is further improved, and finally the conversion efficiency of the whole solar cell is improved.
Owner:YANGZHOU CHANGELIGHT

Phosphoric diffusion technology for metallurgical-grade polysilicon solar cells

The invention relates to diffusion technology for manufacturing solar cells, in particular to phosphoric diffusion technology for metallurgical-grade polysilicon solar cells. The technology comprises the following steps: firstly, performing high temperature grain boundary gettering, wherein high temperature is used to make impurity atoms released at the prior settling position and simultaneously diffused and move to the position of a grain boundary defect to settle to form a clean area near the grain boundary; secondly, performing medium-low temperature phosphoric deposition, wherein diffusion deposition of fresh phosphorus is performed for a short time at a medium low diffusion temperature to finish surface low concentration phosphorus deposition to prepare for long time high temperaturedrive-in in a next step; thirdly, performing diffusion passivation of high temperature deep grain boundary, wherein high temperature long time phosphoric source drive-in is performed to form deep PNjunction at the position of the grain boundary so as to make phosphor generate phosphoric gettering and passivation of phosphoric drift field at the position of the grain boundary; and finally, performing the diffusion again for adjusting to a needed sheet resistance value. The technology greatly reduces the composite of minority carrier originally happening in the position of the grain boundary by utilizing the properties of the diffusion of impurities in the polycrystalline silicon; and after the process is finished, the minority carrier lifetime of a silicon chip is improved compared with that of a silicon clip produced by a normal process, which has an active effect on the final performance of the cells.
Owner:TRINA SOLAR CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products