Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

411 results about "Drift tube" patented technology

Method for producing a tube

A method is described for producing tubular substrates having parallel spaced concentric rings of electrical conductors that can be used as the drift tube of an Ion Mobility Spectrometer (IMS). The invention comprises providing electrodes on the inside of a tube that are electrically connected to the outside of the tube through conductors that extend between adjacent plies of substrate that are combined to form the tube. Tubular substrates are formed from flexible polymeric printed wiring board materials, ceramic materials and material compositions of glass and ceramic, commonly known as Low Temperature Co-Fired Ceramic (LTCC). The adjacent plies are sealed together around the electrode.
Owner:NAT TECH & ENG SOLUTIONS OF SANDIA LLC

Ionization at atmospheric pressure for mass spectrometric analyses

The invention relates to the feeding of analyte ions, generated at atmospheric pressure, efficiently into the mass spectrometer. The invention provides a lengthy ion mobility drift tube with a focusing electric field inside to guide the ions from an ionization cloud generated at atmospheric pressure towards the entrance opening of the mass spectrometer, and to dry droplets which might occur in the ionization cloud by a hot drying gas flowing through the ion mobility drift tube towards the ionization cloud.
Owner:BRUKER DALTONIK GMBH & CO KG

Apparatus and method for E-beam dark field imaging

One embodiment disclosed relates to a scanning electron beam apparatus including an objective lens, scan deflectors, de-scan deflectors, an energy-filter drift tube, and a segmented detector. The objective lens may be an immersion lens configured with a high extraction field so as to preserve azimuthal angle discrimination of the electrons scattered from the specimen surface. The de-scan deflectors may be used to compensate for the scanning of the incident electron beam. The energy-filter drift tube is configured to align the scattered electrons according to polar angles of trajectory from the specimen surface.
Owner:KLA TENCOR TECH CORP

Charged particle beam apparatus

A charged particle beam apparatus in which an electrostatic lens is used as a main focusing element to obtain a subminiature high-sensitivity high-resolution SEM, a drift tube for an electron beam is located inside a column between an electron source and a sample, and a detector for secondary electrons is located inside the drift tube. This solves the problem associated with the provision of a secondary electron detector, which heretofore has been a bottleneck in making a subminiature high-resolution SEM column.
Owner:HITACHI HIGH-TECH CORP

Correlation ion mobility spectroscopy

Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.
Owner:NAT TECH & ENG SOLUTIONS OF SANDIA LLC

Mass analysis of mobility selected ion populations

Particular aspects provide novel methods for analysis of ion populations, the methods comprising filtering and selecting an ion population using a low-field dual-gate ion mobility spectrometer comprising a drift tube, the spectrometer operating at a pressure of at least 100 Torr, to provide mobility-selected ions. Certain aspects comprise: (i) subsequently accumulating the low-field selected ions in an ion trap (e.g., an MS ion trap) and mass spectrometry analysis; (ii) introducing the low-field selected ions into a high-field ion mobility spectrometer for separating thereby (optionally followed by mass spectrometry); and (iii) introducing the low-field selected ions into an ion trap mass spectrometer, and subsequently into a second low-field ion mobility spectrometer (e.g., a non-dual gate spectrometer operating at less than about 100 Torr). Additional aspects provide novel apparatus and combination thereof for performing the disclosed methods.
Owner:WASHINGTON STATE UNIVERSITY

High performance ion mobility spectrometry using hourglass electrodynamic funnel and internal ion funnel

A method and apparatus enabling increased sensitivity in ion mobility spectrometry / mass spectrometry instruments which substantially reduces or eliminates the loss of ions in ion mobility spectrometer drift tubes utilizing a device for transmitting ions from an ion source which allows the transmission of ions without significant delay to an hourglass electrodynamic ion funnel at the entrance to the drift tube and / or an internal ion funnel at the exit of the drift tube. An hourglass electrodynamic funnel is formed of at least an entry element, a center element, and an exit element, wherein the aperture of the center element is smaller than the aperture of the entry element and the aperture of the exit elements. Ions generated in a relatively high pressure region by an ion source at the exterior of the hourglass electrodynamic funnel are transmitted to a relatively low pressure region at the entrance of the hourglass funnel through a conductance limiting orifice. Alternating and direct electrical potentials are applied to the elements of the hourglass electrodynamic funnel thereby drawing ions into and through the hourglass electrodynamic funnel thereby introducing relatively large quantities of ions into the drift tube while maintaining the gas pressure and composition at the interior of the drift tube as distinct from those at the entrance of the electrodynamic funnel and allowing a positive gas pressure to be maintained within the drift tube, if desired. An internal ion funnel is provided within the drift tube and is positioned at the exit of said drift tube. The advantage of the internal ion funnel is that ions that are dispersed away from the exit aperture within the drift tube, such as those that are typically lost in conventional drift tubes to any subsequent analysis or measurement, are instead directed through the exit of the drift tube, vastly increasing the amount of ions exiting the drift tube.
Owner:BATTELLE MEMORIAL INST

Cluster-ion beam irradiation apparatus and method for manufacturing magnetic head element using the same

In a cluster ion beam irradiation apparatus including an apparatus for measuring size and energy distribution of gas cluster ions by using the time of flight (TOF) mass spectrometry, a unit for applying a retarding voltage is disposed in a stage preceding a TOF measuring instrument including a drift tube and a current measuring instrument. By measuring the size and energy distribution of the gas cluster ions and adjusting ionization conditions, cluster ions having predetermined energy and size are supplied to a work surface. In addition, a product of a pressure in an ion transportation device and an ion transportation length is controlled so as to satisfy the relation P×L≦30 / N2 / 3 / E1 / 2 Pa.m, where N is the size of gas cluster ions used for irradiation, and E is kinetic energy (eV) of the gas cluster ions.
Owner:HITACHI LTD

Near-field plume mass-spectroscopic diagnostic E*B probe based on Faraday cup

The invention discloses a near-field plume mass-spectroscopic diagnostic E*B probe based on the Faraday cup and belongs to the technical field of plasma mass-spectroscopic diagnosis. The probe mainly applied to measuring near-field plumes of an ion thruster and of a Hall thruster comprises a central frame, ferrite permanent magnets, a flat electrode plate, an electrode plate holder, a collimator tube, a drift tube, a Faraday cup, six carbon steel shells and an anti-sputtering heat-insulating layer. According to the connectional relation, the central frame is used as a core part, the ferrite permanent magnets are distributed on upper and lower surfaces of the central frame, the electrode plate is fixed in the central frame, and an orthogonal electromagnetic field area is formed. The six carbon steel shells are used for packaging, and the front ends of the shells are coated with an anti-sputtering heat-insulating layer. The collimator tube of stainless steel and the drift tube are fitly fixed to the centers of two ends of the central frame through shaft holes. Ions different in valence are screened by adjusting voltage among the electrode plates, univalent and bivalent ion currents are acquired with the Faraday cup of aluminum, and the ratio of near-field plum bivalent ions is acquired by analytical computing.
Owner:BEIHANG UNIV

Apparatus and Methods for Ion Mobility Spectrometry

There is provided of an on mobility spectrometer for separating ions according to their on mobility comprising, in various aspects: a drift tube having therein a drift space and in the drift space at least two on separation paths of different lengths: a straight drift tube having therein a helical ion separation path; a helical on separation path surrounding an axially extending inner electrode assembly; and a drift tube for separating ions according to their ion mobility wherein a rotating arcuate electric field is applied in operation to separate ions having an ion mobility such that their rotational velocity in the drift tube is matched to the rotational velocity of the rotating arcuate electric field. Various methods for separating ions according to their on mobility are also provided.
Owner:THERMO FISHER SCI BREMEN

Apparatus and method for e-beam dark field imaging

One embodiment disclosed relates to a scanning electron beam apparatus including an objective lens, scan deflectors, de-scan deflectors, an energy-filter drift tube, and a segmented detector. The objective lens may be an immersion lens configured with a high extraction field so as to preserve azimuthal angle discrimination of the electrons scattered from the specimen surface. The de-scan deflectors may be used to compensate for the scanning of the incident electron beam. The energy-filter drift tube is configured to align the scattered electrons according to polar angles of trajectory from the specimen surface.
Owner:KLA TENCOR TECH CORP

High performance ion mobility spectrometry using hourglass electrodynamic funnel and internal ion funnel

A method and apparatus enabling increased sensitivity in ion mobility spectrometry / mass spectrometry instruments which substantially reduces or eliminates the loss of ions in ion mobility spectrometer drift tubes utilizing a device for transmitting ions from an ion source which allows the transmission of ions without significant delay to an hourglass electrodynamic ion funnel at the entrance to the drift tube and / or an internal ion funnel at the exit of the drift tube. An hourglass electrodynamic funnel is formed of at least an entry element, a center element, and an exit element, wherein the aperture of the center element is smaller than the aperture of the entry element and the aperture of the exit elements. Ions generated in a relatively high pressure region by an ion source at the exterior of the hourglass electrodynamic funnel are transmitted to a relatively low pressure region at the entrance of the hourglass funnel through a conductance limiting orifice. Alternating and direct electrical potentials are applied to the elements of the hourglass electrodynamic funnel thereby drawing ions into and through the hourglass electrodynamic funnel thereby introducing relatively large quantities of ions into the drift tube while maintaining the gas pressure and composition at the interior of the drift tube as distinct from those at the entrance of the electrodynamic funnel and allowing a positive gas pressure to be maintained within the drift tube, if desired. An internal ion funnel is provided within the drift tube and is positioned at the exit of said drift tube. The advantage of the internal ion funnel is that ions that are dispersed away from the exit aperture within the drift tube, such as those that are typically lost in conventional drift tubes to any subsequent analysis or measurement, are instead directed through the exit of the drift tube, vastly increasing the amount of ions exiting the drift tube.
Owner:BATTELLE MEMORIAL INST

Linac for ion beam acceleration

InactiveUS6888326B2Effective reduction in overall dimensionSatisfies requirementLinear acceleratorsMachines/enginesIon beamDrift tube
A drift tube linear accelerator (linac) that can be used for the acceleration of low energy ion beams. The particles enter the linac at low energy and are accelerated and focused along a straight line in a plurality of resonant accelerating structures interposed by coupling structures up to the desired energy. In the accelerating structures, excited by an H-type resonant electromagnetic field, a plurality of accelerating gaps is provided between drift tubes supported by stems, for instance alternatively horizontally and vertically disposed. A basic module composed of two accelerating structures and an interposed coupling structure, or a modified coupling structure connected to a RF power generator, is if necessary linked to a vacuum system and equipped with one or more quadrupoles.
Owner:FOND PER ADROTERAPIA ONCOLOGICA TERA

Radiation portal monitor system and method

A portal monitoring system has a cosmic ray charged particle tracker with a plurality of drift cells. The drift cells, which can be for example aluminum drift tubes, can be arranged at least above and below a volume to be scanned to thereby track incoming and outgoing charged particles, such as cosmic ray muons, whilst also detecting gamma rays. The system can selectively detect devices or materials, such as iron, lead, gold and / or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can also detect any radioactive sources occupying the volume from gamma rays emitted therefrom. If necessary, the drift tubes can be sealed to eliminate the need for a gas handling system. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.
Owner:TRIAD NAT SECURITY LLC

Ion mobility spectrometer apparatus and methods

An ion mobility spectrometer includes a protective housing. A drift tube having at least one inlet and at least one outlet confines a drift gas. An ion gate is positioned in the drift tube. The ion gate defines a reaction region and a drift region in the drift tube. An ion detector is positioned in the drift tube downstream of the ion gate at an end of the drift region. A helical resistive wire coil is positioned around the drift tube. A power supply generates an electric field in the helical resistive wire coil that rapidly controls the temperature of the drift gas.
Owner:EXCELLIMS CORP

Charged particle beam apparatus

A charged particle beam apparatus in which an electrostatic lens is used as a main focusing element to obtain a subminiature high-sensitivity high-resolution SEM, a drift tube for an electron beam is located inside a column between an electron source and a sample, and a detector for secondary electrons is located inside the drift tube. This solves the problem associated with the provision of a secondary electron detector, which heretofore has been a bottleneck in making a subminiature high-resolution SEM column.
Owner:HITACHI HIGH-TECH CORP

Device for two-dimensional gas-phase separation and characterization of ion mixtures

The present invention relates to a device for separation and characterization of gas-phase ions. The device incorporates an ion source, a field asymmetric waveform ion mobility spectrometry (FAIMS) analyzer, an ion mobility spectrometry (IMS) drift tube, and an ion detector. In one aspect of the invention, FAIMS operating voltages are electrically floated on top of the IMS drift voltage. In the other aspect, the FAIMS / IMS interface is implemented employing an electrodynamic ion funnel, including in particular an hourglass ion funnel. The present invention improves the efficiency (peak capacity) and sensitivity of gas-phase separations; the online FAIMS / IMS coupling creates a fundamentally novel two-dimensional gas-phase separation technology with high peak capacity, specificity, and exceptional throughput.
Owner:BATTELLE MEMORIAL INST

Neutron tubes

A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium / tritium (or even just a tritium) plasma is generated in the chamber and D or D / T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.
Owner:RGT UNIV OF CALIFORNIA

Electron gun for a multiple beam klystron using magnetic focusing with a magnetic field corrector

An RF device comprising a plurality of drift tubes, each drift tube having a plurality of gaps defining resonant cavities, is immersed in an axial magnetic field. RF energy is introduced at an input RF port at one of these resonant cavities and collected at an output RF port at a different RF cavity. A plurality of electron beams passes through these drift tubes, and each electron beam has an individual magnetic shaping applied which enables confined beam transport through the drift tubes.
Owner:CALABAZAS CREEK RES

Technique for Monitoring and Controlling a Plasma Process

A time-of-flight ion sensor for monitoring ion species in a plasma includes a housing. A drift tube is positioned in the housing. An extractor electrode is positioned in the housing at a first end of the drift tube so as to attract ions from the plasma. A plurality of electrodes is positioned at a first end of the drift tube proximate to the extractor electrode. The plurality of electrodes is biased so as to cause at least a portion of the attracted ions to enter the drift tube and to drift towards a second end of the drift tube. An ion detector is positioned proximate to the second end of the drift tube. The ion detector detects arrival times associated with the at least the portion of the attracted ions.
Owner:VARIAN SEMICON EQUIP ASSOC INC

Technique for monitoring and controlling a plasma process

An in-situ ion sensor is disclosed for monitoring ion species in a plasma chamber. The ion sensor may comprise: a drift tube; an extractor electrode and a plurality of electrostatic lenses disposed at a first end of the drift tube, wherein the extractor electrode is biased to attract ions from a plasma in the plasma chamber, and wherein the plurality of electrostatic lenses cause at least one portion of the attracted ions to enter the drift tube and drift towards a second end of the drift tube within a limited divergence angle; an ion detector disposed at the second end of the drift tube, wherein the ion detector detects arrival times associated with the at least one portion of the attracted ions; and a housing for the extractor, the plurality of electrostatic lenses, the drift tube, and the ion detector, wherein the housing accommodates differential pumping between the ion sensor and the plasma chamber.
Owner:VARIAN SEMICON EQUIP ASSOC INC

Method for rapidly screening 40 prohibited antibiotics in cosmetics

The invention discloses a method for rapidly screening 40 prohibited antibiotics in cosmetics. The method comprises the following steps: (1) manufacturing an in-situ spray ionization device: producing a borosilicate glass capillary and assembling an in-situ spray ionization device; (2) ion mobility spectrometry detection: dipping a metal micro electrode into a cosmetic sample, then inserting the metal micro electrode into a borosilicate glass capillary, which is filled with methanol in advance, placing the capillary on the front end of the electrospray ionization (ESI) injection port of an ion mobility spectrometry instrument, setting the parameters of the ion mobility spectrometry instrument, ionizing the sample, separating the ionized sample in a drift tube, detecting the sample by a Faraday cup detector to obtain a corresponding experiment map. If the sample detected by the ion mobility spectrometry contains prohibited antibiotics, the sample can be further detected by high performance liquid chromatography-mass spectrum (HPLC-MS) or mass spectrum. The provided method is accurate and reliable, on the basis that the detected data is precise, the detection cost is largely reduced, and the detection efficiency is improved.
Owner:CHINESE ACAD OF INSPECTION & QUARANTINE

Focused droplet nebulizer for evaporative light scattering detector

A focused droplet nebulizer of the invention produces substantially uniform droplets of a predetermined size. Droplets are pushed out through a small outlet orifice by the contraction of a chamber. The droplets can be carried on a substantially non-divergent path in a drift tube. A piezo membrane micro pump acts in response to an electrical control signal to force a droplet out of the outlet orifice. The nebulizer can operate at frequencies permitting a stream of individual droplets of the predetermined size to be sent along the substantially non-divergent path in the drift tube in a preferred embodiment ELSD device.
Owner:UNIVERSITY OF MISSOURI

Ion-mobility spectrometry sensor for NOx detection

A sensor and detection methods are provided for detecting nitric oxides (NOx) in an exhaust gas based upon ion mobility spectrometry (IMS) technique. An ionization chamber having an interior electrically conductive shell receives exhaust gas. A spark electrode having a needle tip extends into the ionization chamber. A shutter grid is coupled between the ionization chamber and an ion drift tube. A substantially continuous spark discharge is established between the electrically conductive shell and the needle tip of the spark electrode for ionization of the exhaust gas. Negative NO2 ions are kept inside the chamber by biasing the electrically conductive shell and the shutter grid at a negative voltage. Then a positive pulse is applied to the shutter grid to cause the shutter to open for negative NO2 ions to exit into the ion drift tube. The IMS sensor is small-sized, low-cost, robust, and reliable.
Owner:UCHICAGO ARGONNE LLC

Neutron tubes

A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium / tritium (or even just a tritium) plasma is generated in the chamber and D or D / T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.
Owner:LEUNG KA NGO +2

X wave band over-mode relativistic klystron amplifier

ActiveCN104409302AIncrease radial sizeAchieve isolationReflex klystronsKlystronX-wave
The invention discloses an X wave band over-mode relativistic klystron amplifier, which comprises an annular cathode, a resonant reflector, an input cavity, a first section of drift tube, a wave absorbing material, a buncher cavity, a second section of drift tube, an output cavity and a magnetic field coil, wherein the annular cathode is arranged at the most significant end of the structure and emits annular relativistic electron beams outwards under the action of high voltage pulse, the resonant reflector, the input cavity, the first section of drift tube, the wave absorbing material, the buncher cavity, the second section of drift tube and the output cavity are sequentially arranged at rear of the annular cathode, the magnetic field coil is installed at the periphery of the whole structure, the working mode of the resonant reflector, the input cavity, the buncher cavity and the output cavity is a TM02 mode, and the first section of drift tube and the second section of drift tube can transmit a TM01 mode. The X wave band over-mode relativistic klystron amplifier can produce high power X wave band microwave.
Owner:NORTHWEST INST OF NUCLEAR TECH

Medical proton linear accelerator

The invention discloses a medical proton linear accelerator. The medical proton linear accelerator comprises an ECR ion source, an RFQ accelerator, an SDTL and a traveling wave proton accelerator which are connected in sequence; a separated type drift tube linear accelerator, namely SDTL, is adopted in an intermediate energy acceleration section; the traveling wave proton accelerator is adopted in a high energy acceleration section, so that the medical proton linear accelerator is more compact in structure and smaller in occupied space; the energy of the emitted proton beams can be continuously adjustable within a rang of 70-250MeV, so that the requirement of adjusting energy of different beams in a patient body due to different tumor positions in tumor treatment can be satisfied; in addition, the SDTL and the traveling wave proton accelerator both adopt a structure which is formed by multiple sections connected in sequence, and can be constructed in different periods and different stages, so as to satisfy requirement on proton energy of different hospitals; and energy upgrading also can be performed according to treatment demands in post periods.
Owner:国科中子医疗科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products