Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1614 results about "Radiation field" patented technology

Nanodosimeter based on single ion detection

A nanodosimeter device (15) for detecting positive ions induced in a sensitive gas volume by a radiation field of primary particle, comprising an ionization chamber (10) for holding the sensitive gas volume to be irradiated by the radiation field of primary particles; an ion counter system connected to the ionization chamber (10) for detecting the positive ions which pass through the aperture opening and arrive at the ion counter (12) at an arrival time; a particle tracking system for position-sensitive detection of the primary particles passing through the sensitive gas volume; and a data acquisition system capable of coordinating the readout of all data signals and of performing data analysis correlating the arrival time of the positive ions detected by the ion counter system relative to the position sensitive data of primary particles detected by the particle tracking system. The invention further includes the use of the nanodosimeter for method of calibrating radiation exposure with damage to a nucleic acid within a sample. A volume of tissue-equivalent gas is radiated with a radiation field to induce positive ions. The resulting positive ions are measured and compared with a determination of presence or extent of damage resulting from irradiating a nucleic acid sample with an equivalent dose of radiation.
Owner:LOMA LINDA UNIVERSITY +1

Method and system for high-speed, 3D imaging of optically-invisible radiation and detector and array of such detectors for use therein

A high-speed, three-dimensional, gamma-ray imaging method and system as well as a detector and array of such detectors for use therein are provided which characterize radioactivity distributions in nuclear and radioactive waste and materials facilities by superimposing radiation images on a view of the environment using see-through display screens or shields to provide a stereoscopic view of the radiation. The method and system provide real-time visual feedback about the locations and relative strengths of radioactive sources. The method and system dynamically provide continuous updates to the displayed image illustrating changes, such as source movement. A pair of spaced gamma-ray cameras of a detector subsystem function like “gamma eyes”. A pair of CCD cameras may be coupled to the detector subsystem to obtain information about the physical architecture of the environment. A motion tracking subsystem is used to generate information on the user's position and head orientation to determine what a user “sees”. The invention exploits the human brain's ability to naturally reconstruct a 3D, stereoscopic image from 2D images generated by two “imagers” separated by a known angle(s) without the need for 3D mathematical image reconstruction. The method and system are not only tools for minimizing human exposure to radiation thus assisting in ALARA (As Low As Reasonably Achievable) planning, but also are helpful for identifying contamination in, for example, laboratory or industrial settings. Other optically-invisible radiation such as infrared radiation caused by smoldering fires may also be imaged. Detectors are manufactured or configured in curvilinear geometries (such as hemispheres, spheres, circles, arcs, or other arrangements) to enable sampling of the ionizing radiation field for determination of positional activity (absolute or relative amounts of ionizing radiation) or spectroscopy (energy distributions of photons). More than one detector system may be used to obtain three-dimensional information. The detector systems are specifically suitable for direct visualization of radiation fields.
Owner:RGT UNIV OF MICHIGAN

Radiotherapy planning method and device, radiotherapy dose determining method and device and radiotherapy quality guaranteeing method and device

ActiveCN104548372AHigh precisionReduce repetitive setup errorsRadiation therapyObject basedDensity distribution
The invention discloses a radiotherapy planning method and device, a radiotherapy dose determining method and device and a radiotherapy quality guaranteeing method and device. The radiotherapy dose determining method includes the steps of online obtaining image data of a radiotherapy object, obtaining a density distribution image of the object based on the image data, determining a region of interest, and online making a radiotherapy plan of the object according to the density distribution image and the region of interest; executing the radiotherapy plan; rebuilding radiation field intensity distribution data based on information recorded by machines; carrying out calculation based on the radiation field intensity distribution data to obtain practical radiotherapy dose distribution. As the online-obtained image data are adopted, the accuracy of the image data is improved; as the radiation field intensity distribution data are rebuilt based on the information recorded by the machines, the dose distribution accuracy is higher. In the radiotherapy quality guaranteeing method, when deviation exists between the practical dose distribution result and a main plan dose, a sub-plan is modified, it is guaranteed that the use total dost is coincident with the plan dose, and the radiotherapy quality is improved.
Owner:SHANGHAI UNITED IMAGING HEALTHCARE

Microwave related imaging system and imaging method based on thinned array

The invention discloses a microwave related imaging system and a microwave related imaging method based on a thinned array, which mainly aim to solve the problems of poor imaging effect and low resolution when non-radial relative movement does not exist between a radar antenna and a target in the prior art. The system comprises a transmitting antenna (1), a target (2), a receiver (3) and a signal processor (5), wherein the transmitting antenna (1) is formed by a thinned array antenna; different microwave coded signals are transmitted by all array elements, so as to form a microwave radiation field in space through incoherent superposition; the target (2) is irradiated through the microwave radiation field, so as to generate target scattering echoes; the microwave radiation field (4) on the surface of the target (2) is stored; the target scattering echoes are received by the receiver (3) through a single antenna and a single channel; and the target scattering echoes received by the receiver (3) and the pre-stored microwave radiation field (4) are processed by the signal processor (5), so as to obtain the imaging of the target. By using the system and the method, super-resolution imaging of the target without ambiguity can be realized when the non-radial relative movement does not exist between the radar antenna and the target, and the system and the method can be used for super-resolution imaging of the target by an airborne forward-looking radar and a ball-borne radar.
Owner:XIDIAN UNIV

Near-field real-time calibration method for human body millimeter wave imaging safety inspection system

InactiveCN102135610ARadiation field disturbance is smallReduce disturbanceWave based measurement systemsTime delaysRadiation field
The invention discloses a near-field real-time calibration method for a human body millimeter wave imaging safety inspection system, and the calibration system comprises a switch array, an antenna array, a metal calibration line, an amplitude and phase consistency calibration module and a relative time delay calibration module. The antenna array is used for measuring a reference signal, the amplitude and phase consistency calibration module is used for calibrating amplitude and phase consistency, and the relative time delay calibration module is used for calibrating relative time delay, thereby completing the near-field real-time calibration method for the human body millimeter wave imaging safety inspection system. In the method, the metal line is adopted for performing near-field calibration on the imaging system, and the disturbance of the structure of the metal calibration line on a radiation field of the antenna array is small, so that the calibration repeatability is good, and the calibration precision can be ensured. The calibration method can complete calibration by only performing measurement on an air target region once, a calibration reflector does not need to be placed, the calibration time is less than imaging measurement time, and real-time calibration can be performed on a working clearance of the system at any time.
Owner:中国航天科工集团第二研究院二〇三所

Electromagnetic radiation sensitivity testing method for increasing test precision

The invention discloses an electromagnetic radiation sensitivity testing method for increasing test precision, which comprises six steps: a single radiating antenna is used for radiating from a far field, and the radiating power of the antenna, the field intensity value of electric-field sensors and the distance between the antenna and the electric-field sensors are measured; a tested device is placed, and a plurality of electric-field sensors are arranged; the values of the electric-field sensors are recorded at the moment; the radiating antenna is approached to the tested device, the difference of the field intensity value at the moment and the field intensity measured in the last step is from 0dB to 6 dB, and the values of the electric-field sensors are recorded at the moment; the power of the radiating antenna is calculated in standard field intensity; and a sensitivity test is carried out. The invention gives out satisfying conditions between the radiation field intensity Elim prescribed by a testing standard and the radiation power P of the radiating antenna, utilizes an antenna theory to calculate the satisfying conditions between the power of the radiating antenna and the measuring field intensity value of a testing point when an internal coupling field of the tested device reaches the testing requirement and gives out a quantized calculating method, thereby increasing the precision of the electromagnetic radiation sensitivity test, and ensuring that a testing result is accurate and can repeatedly appear.
Owner:BEIHANG UNIV

Gamma nuclide identification method

The invention provides a gamma nuclide fast identification method in a complex radiation field, comprising the following steps: measuring a radiation field to get a gamma energy spectrum; deducting a comprehensive background from the gamma energy spectrum and reducing the noise of the gamma energy spectrum to get a net energy spectrum; determining potential nuclides according to the peak positions in the net energy spectrum; calculating the total net peak area of each potential nuclide; standardizing the total net peak area of each potential nuclide to get the standardized total net peak area of the potential nuclide; deducting a Compton scattering background from the standardized total net peak area of each potential nuclide to get the pure peak area value of each potential nuclide; calculating the total probability value and the probability standard threshold of each potential nuclide in the radiation field; and calculating the existence probability of each potential nuclide. According to the invention, multiple times of background deduction calculation and standardization are performed on the measured energy spectrum data, and a nuclide can be identified and the existence probability of the nuclide can be calculated quickly based on the total probability value calculated based on the probability statistics principle and the standard threshold calculated by a standard source.
Owner:INST OF HIGH ENERGY PHYSICS CHINESE ACADEMY OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products