Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

465 results about "3 d imaging" patented technology

3D imaging is a process to render a three-dimensional image on a two-dimensional surface by creating the optical illusion of depth. Generally, 3D imaging uses two still or motion camera lenses a slight distance apart to photograph a three-dimensional object. The process effectively duplicates the stereoscopic vision of human eyes.

3D imaging system

An optical imaging system comprising: a taking lens system that collects light from a scene being imaged with the optical imaging system; a 3D camera comprising at least one photosurface that receives light from the taking lens system simultaneously from all points in the scene and provides data for generating a depth map of the scene responsive to the light; and an imaging camera comprising at least one photosurface that receives light from the taking lens system and provides a picture of the scene responsive to the light.
Owner:MICROSOFT INT HLDG BV

Wireless wrist computing and control device and method for 3D imaging, mapping, networking and interfacing

An apparatus and method for light and optical depth mapping, 3D imaging, modeling, networking, and interfacing on an autonomous, intelligent, wearable wireless wrist computing, display and control system for onboard and remote device and graphic user interface control. Embodiments of the invention enable augmentation of people, objects, devices and spaces into a virtual environment and augmentation of virtual objects and interfaces into the physical world through its wireless multimedia streaming and multi-interface display and projection systems.
Owner:EYECAM INC

Integrated Illumination And Detection For LIDAR Based 3-D Imaging

Methods and systems for performing three dimensional LIDAR measurements with a highly integrated LIDAR measurement device are described herein. In one aspect, the illumination source, detector, and illumination drive are integrated onto a single printed circuit board. In addition, in some embodiments, the associated control and signal conditioning electronics are also integrated onto the common printed circuit board. Furthermore, in some embodiments, the illumination drive and the illumination source are integrated onto a common Gallium Nitride substrate that is independently packaged and attached to the printed circuit board. In another aspect, the illumination light emitted from the illumination source and the return light directed toward the detector share a common optical path within the integrated LIDAR measurement device. In some embodiments, the return light is separated from the illumination light by a beam splitter. In some other embodiments, the optical design avoids losses associated with a beam splitter.
Owner:VELODYNE LIDAR USA INC

2-D Planar VCSEL Source for 3-D Imaging

An apparatus and a method are provided for 3-D proximity sensing, imaging and scanning using a 2-D planar VCSEL array source using reflected radiation from an object being detected. An important aspect of the apparatus is a compact high power optical source and in particular, an optical source comprising a plurality of VCSELs to illuminate the object. VCSELs in the optical source are configured in different 2-D planar arrangements, such that the optical source may be used in many different modes to adapt to different sensing, imaging and scanning requirement suited for different environments including one where shape, size and illumination mode require to be altered dynamically. When used in different modes of operation the apparatus provides a comprehensive set of measured distance and intensity profile of the object to compute a 3-D image.
Owner:PRINCETON OPTRONICS

System for Processing Medical Image data to Provide Vascular Function Information

A system creates a visually (e.g., color) coded 3D image that depicts 3D vascular function information including transit time of blood flow through the anatomy. A system combines 3D medical image data with vessel blood flow information. The system uses at least one repository for storing, 3D image data representing a 3D imaging volume including vessels, in the presence of a contrast agent and 2D image data representing a 2D X-ray image through the imaging volume in the presence of a contrast agent. An image data processor uses the 3D image data and the 2D image data in deriving blood flow related information for the vessels. A display processor provides data representing a composite single displayed image including a vessel structure provided by the 3D image data and the derived blood flow related information.
Owner:SIEMENS MEDICAL SOLUTIONS USA INC

3-D imaging multiple target laser radar

A three dimensional imaging device is presented which uses a single pulse from a pulsed light source to detect objects which are obscured by camouflage, fog or smoke but otherwise enveloped by a light-transmitting medium. The device simultaneously operates in two modes, light reflected from the nearest object is processed to form a three-dimensional image by an array of pixels. This first image is based upon the light-pulse transit time recorded in each pixel. Each pixel also contains a high-speed analog memory that sequentially stores reflected signals at a repeated time interval. The first reflection acts as a time base that controls when the analog memory begins or ends the storage sequence. The first return could be from a camouflage net and the amplitudes of the return signals, after the first return, would then be from objects behind the net. Computer processing these amplitudes reveals the three-dimensional nature of the obscured objects.The device consists of the pulsed light source, optics for collecting the reflected light, a sensor for detecting the light and converting it to electrical data, drive and output electronics for timing and signal conditioning of data generated by the sensors and a computer for processing the sensor data and converting it to a three dimensional image. The sensor collects and processes the light data in a unique manner, first converting it to electricity by a number of alternate detector technologies and then using integrated circuit chips which consist of a two dimensional array of electronic pixels also called unit cells. The two dimensional array defines two dimensions of the image. Stored within each unit cells is data associated with the third dimension, ranges of targets, and amplitudes of target reflections. This data is read out of the integrated circuit chip in the time interval between laser pulses to a processing computer. The processing computer corrects the data and, by means of computer algorithms specific to the device, converts the data to a three-dimensional image of one or more targets. This image may be viewed or processed electronically to isolate targets.
Owner:CONTINENTAL AUTONOMOUS MOBILITY US LLC

LIDAR Based 3-D Imaging With Varying Pulse Repetition

ActiveUS20170269209A1Reduce total energy consumption and heatReduce consumptionElectromagnetic wave reradiationSteroscopic systemsPulse beamRadar
Methods and systems for performing three dimensional LIDAR measurements with different pulse repetition patterns are described herein. Each repetitive pattern is a sequence of measurement pulses that repeat over time. In one aspect, the repetition pattern of a pulsed beam of illumination light emitted from a LIDAR system is varied to reduce total energy consumption and heat generated by the LIDAR system. In some examples, the repetitive pattern is varied by skipping a number of pulses. In some examples, the repetitive pattern of pulses of illumination light emitted from the LIDAR system is varied by changing a repetition rate of the sequence of emitted pulses. In some examples, the pulse repetition pattern is varied based on the orientation of the LIDAR device. In some examples, the repetition pattern is varied based on an object detected by the LIDAR device or another imaging system.
Owner:VELODYNE LIDAR USA INC

Systems and methods for monitoring caregiver and patient protocol compliance

A system and methods is provided for facilitating, monitoring and recording caregiver and patient compliance with established hospital hand hygiene protocols. The system comprises a 3-D imaging and monitoring assembly and an optional intelligent programmable monitor / sanitizer. Three dimensional imagery tracks a caregiver's movements and location while generating a representative image value. Information acquired by the imaging system determines the proximity of a caregiver to the patient and / or contamination source and determines if the sanitizers provided have been utilized and if so, at an appropriate time and distance from the patient per hospital protocol. While being monitored, a representative Avatar based on physical characteristics derived from three dimensional images of the caregiver and patient may be generated so as to maintain anonymity of both unless a violation of institutional protocol occurs which may be forensically recorded in real-time for analysis.
Owner:DEUT RICHARD

Multiple Pulse, LIDAR Based 3-D Imaging

Methods and systems for performing multiple pulse LIDAR measurements are presented herein. In one aspect, each LIDAR measurement beam illuminates a location in a three dimensional environment with a sequence of multiple pulses of illumination light. Light reflected from the location is detected by a photosensitive detector of the LIDAR system during a measurement window having a duration that is greater than or equal to the time of flight of light from the LIDAR system out to the programmed range of the LIDAR system, and back. The pulses in a measurement pulse sequence can vary in magnitude and duration. Furthermore, the delay between pulses and the number of pulses in each measurement pulse sequence can also be varied. In some embodiments, the multi-pulse illumination beam is encoded and the return measurement pulse sequence is decoded to distinguish the measurement pulse sequence from exogenous signals.
Owner:VELODYNE LIDAR USA INC

Methods for Full Parallax Compressed Light Field 3D Imaging Systems

A compressed light field imaging system is described. The light field 3D data is analyzed to determine optimal subset of light field samples to be (acquired) rendered, while the remaining samples are generated using multi-reference depth-image based rendering. The light field is encoded and transmitted to the display. The 3D display directly reconstructs the light field and avoids data expansion that usually occurs in conventional imaging systems. The present invention enables the realization of full parallax 3D compressed imaging system that achieves high compression performance while minimizing memory and computational requirements.
Owner:OSTENDO TECH INC

Methods and devices for generating a representation of a 3D scene at very high speed

The present invention relates to a 3D landscape real-time imager. It also relates to methods for operating such an imager. Such an imager comprises: —at least one illuminating part which is designed to scan at least a portion of the landscape at a given range and having an ultra-short laser pulse source emitting at least one wavelength, and an optical rotating block, with a vertical axis of rotation, and controlled such that given packets of pulses are shaped in a pattern of rotating beams sent toward the said at least partial landscape; —at least one receiving part which comprises a set of SPAD detector arrays, each arranged along a vertical direction and rotating at a given speed in synchronism with the optical rotating block of the illuminating part, the detection data of the SPAD detector arrays being combined to acquire 3D imaging data of the said at least partial landscape in a central controller.
Owner:FASTREE3D

System and method for executing a game process

A 3-D imaging system for recognition and interpretation of gestures to control a computer. The system includes a 3-D imaging system that performs gesture recognition and interpretation based on a previous mapping of a plurality of hand poses and orientations to user commands for a given user. When the user is identified to the system, the imaging system images gestures presented by the user, performs a lookup for the user command associated with the captured image(s), and executes the user command(s) to effect control of the computer, programs, and connected devices.
Owner:MICROSOFT TECH LICENSING LLC

Method and system for high resolution, ultra fast 3-d imaging

A high-speed three-dimensional imaging system includes a single lens camera subsystem with an active imaging element and CCD element, and a correlation processing subsystem. The active imaging element can be a rotating aperture which allows adjustable non-equilateral spacing between defocused images to achieve greater depth of field and higher sub-pixel displacement accuracy. A speckle pattern is projected onto an object and images of the resulting pattern are acquired from multiple angles. The images are locally cross-correlated using a sparse array image correlation technique and the surface is resolved by using relative camera position information to calculate the three-dimensional coordinates of each locally correlated region. Increased resolution and accuracy are provided by recursively correlating the images down to the level of individual points of light and using the Gaussian nature of the projected speckle pattern to determine subpixel displacement between images. Processing is done at very high-speeds by compressing the images before they are correlated. Correlation errors are eliminated during processing by a technique based on the multiplication of correlation table elements from one or more adjacent regions.
Owner:MASSACHUSETTS INST OF TECH

3-d imaging and processing system including at least one 3-d or depth sensor which is continually calibrated during use

3D imaging and processing method and system including at least one 3D or depth sensor which is continuously calibrated during use are provided. In one embodiment, a calibration apparatus or object is continuously visible in the field of view of each 3D sensor. In another embodiment, such as a calibration apparatus is not needed. Continuously calibrated 3D sensors improve the accuracy and reliability of depth measurements. The calibration system and method can be used to ensure the accuracy of measurements using any of a variety of 3D sensor technologies. To reduce the cost of implementation, the invention can be used with inexpensive, consumer-grade 3D sensors to correct measurement errors and other measurement deviations from the true location and orientation of an object in 3D space.
Owner:LIBERTY REACH

Free-hand three-dimensional ultrasound diagnostic imaging with position and angle determination sensors

A freehand 3-D imaging system includes an integrated sensor configuration that provides position and orientation of each 2D imaging plane used for 3-D reconstruction without the need for external references. The position sensors communicate with the imaging system using either wired and wireless means. At least one translational and one angular sensor or three translational sensors acquire data utilized to compute position tags associated with 2D ultrasound image scan frames. The sensors can be built into the ultrasound transducer or can be reversibly connected and therefore retrofitted to existing imaging probes for freehand 3D imaging.
Owner:TRUSTEES OF BOSTON UNIV +1

LIDAR Based 3-D Imaging With Varying Illumination Field Density

Methods and systems for performing three dimensional LIDAR measurements with varying illumination field density are described herein. A LIDAR device includes a plurality of pulse illumination sources and corresponding detectors. The current pulses supplied to the pulse illumination sources are varied to reduce total energy consumption and heat generated by the LIDAR system. In some embodiments, the number of active pulse illumination sources is varied based on the orientation of the LIDAR device, the distance between the LIDAR device and an object detected by the LIDAR device, an indication of an operating temperature of the LIDAR device, or a combination thereof. In some embodiments, the number of active pulse illumination sources is varied based on the presence of an object detected by the LIDAR device or another imaging system.
Owner:VELODYNE LIDAR USA INC

LIDAR Based 3-D Imaging With Varying Illumination Intensity

Methods and systems for performing three dimensional LIDAR measurements with different illumination intensity patterns are described herein. Repetitive sequences of measurement pulses each having different illumination intensity patterns are emitted from a LIDAR system. One or more pulses of each repetitive sequence have a different illumination intensity than another pulse within the sequence. The illumination intensity patterns are varied to reduce total energy consumption and heat generated by the LIDAR system. In some examples, the illumination intensity pattern is varied based on the orientation of the LIDAR device. In some examples, the illumination intensity pattern is varied based on the distance between a detected object and the LIDAR device. In some examples, the illumination intensity pattern is varied based on the presence of an object detected by the LIDAR device or another imaging system.
Owner:VELODYNE LIDAR USA INC

System and method for determining range in 3D imaging systems

A system and method of imaging an object. An array of detectors is mounted in an image plane. Each detector in the array of detectors is connected to a timing circuit having an interpolator, wherein the interpolator includes a first circuit which charges a first capacitor at a different rate than it discharges. An optical pulse is transmitted toward an object so that a portion of the optical pulse is reflected from the object as a reflected pulse and a first value representative of when the optical pulse was transmitted toward the object is recorded. The reflected pulse is detected at one or more detectors and a pulse characteristic of the pulse and a second value representative of when the reflected pulse arrived at the detector are recorded. Range to the object is then calculated as a function of the first and second values and the reflected pulse characteristic.
Owner:TOPCON POSITIONING SYST INC

Combination of Multi-Modality Imaging Technologies

Different applications for multiple imaging technologies are provided to advance patient care. In one aspect, a 3-D imaging device is used to identify the location of target region in a patient, such as a tumor or aneurysm, for instance. The location information is then used to control a device used in performing a surgical or other intervention, further imaging or a diagnostic or therapeutic procedure (920). The device can operate fully automatically, as a robot, or can assist a manual procedure performed by a physician. In another aspect, the invention provides a technique for obtaining an improved image of the vasculature in a patient (1020). In another aspect, images from multiple imaging technologies are combined or fused (1120) to achieve synergistic benefits.
Owner:THE RES FOUND OF STATE UNIV OF NEW YORK

Sensor Element and System Comprising Wide Field-of-View 3-D Imaging LIDAR

A LIDAR sensor element and system for wide field-of-view applications such as autonomous UAS landing site selection is disclosed. The sensor element and system have an imaging source such as a SWIR laser for imaging a field of regard or target with a beam having a predefined wavelength. The beam is scanned over the field of regard or target with a beam steering device such as Risley prism. The reflected beam is captured by the system by receiving optics which may comprise a Risley prism for receiving and imaging the reflected beam upon a photodetector array such as a focal plane array. The focal plane array may be bonded to and a part of a three-dimensional stack of integrated circuits, a plurality of which may comprise one or more read out integrated circuits.
Owner:PFG IP +1

High Resolution Structured Light Source

A structured light source comprising VCSEL arrays is configured in many different ways to project a structured illumination pattern into a region for 3 dimensional imaging and gesture recognition applications. One aspect of the invention describes methods to construct densely and ultra-densely packed VCSEL arrays with to produce high resolution structured illumination pattern. VCSEL arrays configured in many different regular and non-regular arrays together with techniques for producing addressable structured light source are extremely suited for generating structured illumination patterns in a programmed manner to combine steady state and time-dependent detection and imaging for better accuracy. Structured illumination patterns can be generated in customized shapes by incorporating differently shaped current confining apertures in VCSEL devices. Surface mounting capability of densely and ultra-densely packed VCSEL arrays are compatible for constructing compact on-board 3-D imaging and gesture recognition systems.
Owner:PRINCETON OPTRONICS

Laser device for projecting a structured light pattern onto a scene

The present invention relates to a laser device (10) for projecting a structured light pattern (9) onto a scene (15). The device is formed of several arrays (1) of semiconductor lasers (2), each array (1) comprising an irregular distribution of emission areas (2a) of the semiconductor lasers (2). One or several imaging optics (4) image said arrays (1) to an imaging space and superpose the images of said arrays (1) in the imaging space to form said light pattern (9). The proposed laser device generates a light pattern with high contrast and efficiency which may be used for 3D imaging systems, e. g. in automotive applications.
Owner:TRUMPF PHOTONIC COMPONENTS GMBH

Identification, storage and display of land data on a website

Disclosed is a land website that provides a personalized database on which data can be stored, retrieved, customized and communicated (e.g., by e-mail) relating to a particular piece of property. The database can be accessible via a password and a security code over the Internet and may be encrypted for transmission. Land websites can be established that contain image data, map libraries, virtual tours, legal descriptions, title information, e-documents, actual pictures of property and various other information. Unique 3-D imaging of composite images can be provided on the land website as well as fly-around composite 3-D images. The land website provides a unique way of packaging information relating to a piece of land in a single, accessible location. A boundary applet tool is provided on the land website portal that allows a user to simply and easily draw boundaries around the property of interest and then submit an order for more detailed information about the property of interest. Various map data and image data are provided to assist the user in drawing the boundaries. Acreage amounts are automatically calculated based upon the size and area drawn by the user. Properties of interest can be easily accessed by a global coordinate system or by searching on map data that is provided on a wide range of scales.
Owner:LANDNET CORP

Systems and methods for laser radar imaging for the blind and visually impaired

A 3D imaging ladar system comprises a solid state laser and geiger-mode avalanche photodiodes utilizing a scanning imaging system in conjunction with a user interface to provide 3D spatial object information for vision augmentation for the blind. Depth and located object information is presented acoustically by: 1) generating an audio acoustic field to present depth as amplitude and the audio image as a 2D location. 2) holographic acoustical imaging for a 3D sweep of the acoustic field. 3) a 2D acoustic sweep combined with acoustic frequency information to create a 3D presentation.A system to fuse data derived from a three dimensional imaging ladar system with information from a visible, ultraviolet, or infrared camera systems and acoustically present the information in a four or five dimensional acoustical format utilizing three dimensional acoustic position information, along with frequency, and modulation to represent color, texture, or object recognition information is also provided.
Owner:FALLON JAMES JOHN

Laminographic system for 3D imaging and inspection

A digital Laminographic or Tomosynthesis method is described for use in the detection of explosives concealed in baggage. The method uses at least one source of x-ray and at least two sets of detectors, preferably more to generate 3D images of high detail. The data from the detectors can be simply time delayed and summed up to generate high definition image of layers through the bag. This leads to very high speed of 3D imaging, the same speed as in regular x-ray scanners. In addition, there is no rotating gantry, the systems is simple, compact, relatively inexpensive, and can be used to generate 3D images of large shipping containers.
Owner:SINGH SATPAL

3D imaging of live cells with ultraviolet radiation

A method for 3D imaging of cells in an optical tomography system includes moving a biological object relatively to a microscope objective to present varying angles of view. The biological object is illuminated with radiation having a spectral bandwidth limited to wavelengths between 150 nm and 390 nm. Radiation transmitted through the biological object and the microscope objective is sensed with a camera from a plurality of differing view angles. A plurality of pseudoprojections of the biological object from the sensed radiation is formed and the plurality of pseudoprojections is reconstructed to form a 3D image of the cell.
Owner:VISIONGATE

Aerial device that cooperates with an external projector to measure three-dimensional coordinates

A three-dimensional (3D) coordinate measuring system includes an external projector that projects a pattern of light onto an object and an aerial drone attached to a 3D imaging device, the 3D imaging device and the external projector cooperating to obtain 3D coordinates of the object.
Owner:FARO TECH INC

Method and system for high resolution, ultra fast 3-D imaging

A high-speed three-dimensional imaging system includes a single lens camera subsystem with an active imaging element and CCD element, and a correlation processing subsystem. The active imaging element can be a rotating aperture which allows adjustable non-equilateral spacing between defocused images to achieve greater depth of field and higher sub-pixel displacement accuracy. A speckle pattern is projected onto an object and images of the resulting pattern are acquired from multiple angles. The images are locally cross-correlated using a sparse array image correlation technique and the surface is resolved by using relative camera position information to calculate the three-dimensional coordinates of each locally correlated region. Increased resolution and accuracy are provided by recursively correlating the images down to the level of individual points of light and using the Gaussian nature of the projected speckle pattern to determine subpixel displacement between images. Processing is done at very high-speeds by compressing the images before they are correlated. Correlation errors are eliminated during processing by a technique based on the multiplication of correlation table elements from one or more adjacent regions.
Owner:MASSACHUSETTS INST OF TECH

System and method for 3D imaging using structured light illumination

InactiveUS8224064B1Acquisition speed is fastMore robust to extremely worn ridges of the fingersImage enhancementImage analysisRandom noiseComputer science
A biometrics system captures and processes a handprint image using a structured light illumination to create a 2D representation equivalent of a rolled inked handprint. The biometrics system includes an enclosure with a scan volume for placement of the hand. A reference plane with a backdrop pattern forms one side of the scan volume. The backdrop pattern is preferably a random noise pattern and the coordinates of the backdrop pattern are predetermined at system provisioning. The biometrics system further includes at least one projection unit for projecting a structured light pattern onto a hand positioned in the scan volume on or in front of the backdrop pattern and at least two cameras for capturing a plurality of images of the hand, wherein each of the plurality of images includes at least a portion of the hand and the backdrop pattern. A processing unit calculates 3D coordinates of the hand from the plurality of images using the predetermined coordinates of the backdrop pattern to align the plurality of images and mapping the 3D coordinates to a 2D flat surface to create a 2D representation equivalent of a rolled inked handprint. The processing unit can also adjust calibration parameters for each hand scan from calculating coordinates of the portion of backdrop pattern in the at least one image and comparing with the predetermined coordinates of the backdrop pattern.
Owner:UNIV OF KENTUCKY RES FOUND

Systems and methods for automated water detection using visible sensors

Systems and methods are disclosed that include automated machine vision that can utilize images of scenes captured by a 3D imaging system configured to image light within the visible light spectrum to detect water. One embodiment includes autonomously detecting water bodies within a scene including capturing at least one 3D image of a scene using a sensor system configured to detect visible light and to measure distance from points within the scene to the sensor system, and detecting water within the scene using a processor configured to detect regions within each of the at least one 3D images that possess at least one characteristic indicative of the presence of water.
Owner:CALIFORNIA INST OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products