Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

738results about "High-pressure discharge lamps" patented technology

Mercury-free metal halide lamp

Lighting system, comprising a mercury-free metal halide lamp with a light yield of at least 75 lm / W and a color rendition index of at least 75 and an electronic ballast, the electronic ballast impressing a square-wave power supply on the lamp and keeping the power constant. The filling comprises the following components: a buffer gas which also acts as starting gas to start the lamp, a voltage gradient generator, comprising at least one metal halide which vaporizes readily and which is chiefly (by more than 50%) responsible for generating a voltage gradient which corresponds approximately to that of mercury, and a light generator comprising one metal and / or one metal halide.
Owner:PATENT TREUHAND GESELLSCHAFT FUR ELECTRIC GLUEHLAMPEN MBH

Device for operation of a high pressure discharge lamp

To positionally stabilize the arc spot and to prevent the formation of so-called flicker, a super-high pressure discharge lamp which is filled with greater than or equal to 0.20 mg / mm3 of mercury has a feed device which supplies an alternating current with a steady-state operating frequency of from 60 Hz to 1000 Hz and a low frequency of from 5 Hz to 50 Hz. The feed device inserts the alternating current with the low frequency into the alternating current with the steady-state operating frequency with a time interval which has a length equal to at least one half period and at most to five periods, and the time interval being in the range of from 0.1 sec to 120 sec.
Owner:USHIO DENKI KK

Device for operation of a high pressure discharge lamp

To positionally stabilize the arc spot and to prevent the formation of so-called flicker, a super-high pressure discharge lamp which is filled with greater than or equal to 0.20 mg / mm3 of mercury has a feed device which supplies an alternating current with a steady-state operating frequency of from 60 Hz to 1000 Hz and a low frequency of from 5 Hz to 50 Hz. The feed device inserts the alternating current with the low frequency into the alternating current with the steady-state operating frequency with a time interval which has a length equal to at least one half period and at most to five periods, and the time interval being in the range of from 0.1 sec to 120 sec.
Owner:USHIO DENKI KK

Metal halide discharge lamp, lighting device for metal halide discharge lamp, and illuminating apparatus using metal halide discharge lamp

Disclosed is a metal halide discharge lamp which essentially permits disusing mercury. The metal halide discharge lamp comprises a refractory and transparent hermetic vessel, a pair of electrodes fixed to the hermetic vessel, and a discharge medium sealed in the hermetic vessel and containing a first halide, a second halide and a rare gas, the first halide being a halide of a metal which achieves a desired light emission, the second halide having a relatively high vapor pressure, being at least one halide of a metal which is unlikely to emit a visible light compared with the metal of the first halide, and acting as a buffer gas.
Owner:HARISON TOSHIBA LIGHTING CORP

High-intensity electromagnetic radiation apparatus and methods

ActiveUS20050179354A1Reduce connectionsPreserving the consistency of the output power and spectrum of the apparatusDischarge tube main electrodesHigh-pressure discharge lampsElectricityHigh intensity
An apparatus for producing electromagnetic radiation includes a flow generator configured to generate a flow of liquid along an inside surface of an envelope, first and second electrodes configured to generate an electrical arc within the envelope to produce the electromagnetic radiation, and an exhaust chamber extending outwardly beyond one of the electrodes, configured to accommodate a portion of the flow of liquid. In another aspect, the flow generator is electrically insulated. In another aspect, the electrodes are configured to generate an electrical discharge pulse to produce an irradiance flash, and the apparatus includes a removal device configured to remove particulate contamination from the liquid, the particulate contamination being released during the flash and being different than that released by the electrodes during continuous operation.
Owner:MATTSON TECHNOLOGY +1

High power short arc discharge lamp with heat sink

A high power short arc gas discharge lamp includes an electrically insulating reflector body having a concave internal reflector surface with a focal point; an anode and a cathode spaced from the anode to create an arc gap between them proximate the focal point; the reflector body having a conical external surface for reducing the thickness of the reflector body between the concave internal surface and the conical external surface; and an external electrically isolated heat sink mounted on the external conical surface proximate the arc gap.
Owner:EXCELITAS TECH

Emission device for an ultra-high pressure mercury lamp

An emission device for an ultra-high pressure mercury lamp which maintains an electrode tip shape by which a stable discharge can always be carried out is achieved for a short arc ultra-high pressure mercury lamp with silica glass arc tube containing a pair of opposed electrodes spaced apart a distance of at most 2 mm and in which the arc tube is filled with at least 0.15 mg / mm3 of mercury, a rare gas and a halogen in the range from 1×10−6 μmole / mm3 to 1×10−2 μmole / mm3; by providing an operating device which produces a current feed by which the surface of the tip of at least one of the electrodes is shifted into a molten state during lamp operation.
Owner:USHIO DENKI KK

Light source device and projector

A light source device includes: an arc tube having a light emission portion; a first reflection mirror having a substantially concave surface for reflecting light emitted from the light emission portion; and a container which accommodates the arc tube and the first reflection mirror, wherein the container has a duct unit disposed above the arc tube. The duct unit includes a first opening open to the arc tube and disposed at a position shifted toward the traveling direction side from an opening end of the first reflection mirror, a wall portion which forms the edge of the first opening on the side opposite to the traveling direction side as a final end of the duct unit, and an inclined portion disposed in the vicinity of the edge of the first opening on the traveling direction side to bend the flowing direction of the cooling air toward the surface opposite to the surface having the first opening.
Owner:SEIKO EPSON CORP

Metal halide lamp with lithium and cerium iodide

Metal halide lamp includes a discharge vessel having a ceramic wall with an internal diameter Di and enclosing two electrodes whose tips are a distance EA apart, wherein EA / Di>5. The vessel has a filling comprising Hg, CeI, and LiI.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Optical control of light in ceramic arctubes

A ceramic arctube preferably for a high pressure discharge lamp. The ceramic arctube can have an anti-reflection interference coating on the outside or inside surface of the bulb section of the arctube. The outside and / or inside surface of the outer wall of the bulb section of the arctube can be substantially spherical to increase efficiency. The wall thickness of the outer wall of the bulb section can be shaped to lens rays from the arc toward a preselected region of a reflector optically coupled to the arctube to increase efficiency.
Owner:GENERAL ELECTRIC CO

Design of high power pulsed flash lamps

Broadband output high power pulsed flash lamps are useful in many applications, and when specifically optimized, can become an excellent source of ultraviolet (UV) light, which is particularly useful for photo-chemically-induced materials processing applications. Multiple factors involved with the production of high-energy light pulses can in certain cases adversely affect the ultraviolet lamp operation, thereby resulting in the development of micro cracks in lamp envelopes and subsequent limitation in lamp lifetime. Similar factors can be responsible for an increased absorption of UV radiation by lamp components and degradation of lamp efficiency. This invention describes new pulsed flash lamp designs that enable a new generation of high power and performance as required by, for example, many large-scale photo-processing applications. This invention uniquely and advantageously mitigates the development of micro-cracks and failure, and produces dramatically improved electrical efficiency, stability of lamp optical characteristics, and service lifetime.
Owner:LANTIS ROBERT M +4

Ceramic metal halide lamp

A metal halide lamp comprised of a ceramic discharge chamber containing an ionizable fill, said fill comprising Hg, and halides (H) of Na, TI, an alkaline earth metal, and 0>rare earth element (Re)<15 as a molar fraction.
Owner:GENERAL ELECTRIC CO

Mercury free discharge lamp with zinc iodide

A compact fused silica, electroded HID lamp for automotive forward lighting, which contains no mercury. The lamps voltage, approximately 40 volts, is developed in this lamp by vaporizing zinc iodide instead of mercury. A compromise between voltage and luminous flux is achieved through the choice of the sodium scandium (Na:Sc) molar ratio, between 4.5:1 and 6:1 and a zinc iodide (ZnI2) dose of 2 to 6 micrograms per cubic millimeter that permits the lamp to operate within the North America, European and Japanese automotive color specifications for white light. The voltage in the lamp can be controlled according to the zinc iodide doping level without seriously impacting the visible spectrum otherwise provided by the other known dopants in the lamp.
Owner:OSRAM SYLVANIA INC

Reflector lamp having reduced seal temperature

The seal temperature of a reflector lamp having a ceramic metal halide light source is reduced by a light absorbing layer which is provided in a region of the outer jacket adjacent to the electrode seal. Light reflected within the neck cavity of the reflector lamp impinges on the light absorbing layer and is absorbed before it can reach the electrode seal which is at least partially located in the neck of the reflector. The heat from the absorbed light is conducted into the base of the lamp to be dissipated in the socket.
Owner:OSRAM SYLVANIA INC

Gas discharge lamp, in particular for a motor-vehicle headlight

Proposed is a gaseous-discharge lamp, in particular for motor-vehicle headlamps, comprising a burner vessel of glass or the like having at least two electrodes, the burner vessel being provided with a lamp base that includes the electrical terminals and that is insertable into a lamp base socket. Arranged in the lamp base is an electronic ballast unit that supplies the lamp with the necessary ignition and maintaining voltage. By accomodating the balast unit in the lamp base, one can achieve a small-volume gaseous-discharge lamp having short high-voltage leads i an integrated type of construction, making it possible to keep the ignition voltage to a minimum.
Owner:ROBERT BOSCH GMBH

High-pressure mercury discharge lamp and lighting apparatus using the lamp

A high-pressure mercury discharge lamp comprises a light-transmitting discharge vessel having a region surrounding a discharge space and seal portion, a spaced apart electrodes disposed in the discharge vessel and defining a discharge path, and a filling contained in the discharge vessel including mercury, halogen and lithium (Li). Components of the filling are selected such that a ratio of relative spectral energies B / A is within a range 0.15 to 0.45; wherein A represents the relative spectral energy of mercury (Hg) within a wavelenth range of 402.5 nm to 407.5 nm, and B represents the rlative spectral energy of lithium (Li) within a wavelength range of 667.5 nm to 672.5 nm.
Owner:TOSHIBA LIGHTING & TECH CORP

Short arc high-pressure discharge lamp

A short arc high-pressure discharge lamp (1) for dc operation, includes a discharge vessel (2) that has two necks (4) diametrically opposite each other, in which an anode (26) and a cathode (7) made of tungsten are melted in a gastight manner, and which has a filling made of at least one noble gas and possibly mercury. According to the invention, at least the material of the cathode tip (11) contains lanthanum oxide La2O3 and at least another oxide from the group consisting of hafnium oxide HfO2 and zirconium oxide ZrO2 in addition to the above-mentioned tungsten.
Owner:PLANSEE SE

Metal halide lamp and automotive headlamp apparatus

To improve the ratio between first and second halides sealed in a mercury-free lamp, thereby providing a metal halide lamp which has a high luminous efficiency and a low lamp voltage reduction and emits light of an appropriate color and an automotive headlamp apparatus incorporating the same. A metal halide lamp includes a hermetic vessel 1 which is fire resistant and translucent; a pair of electrodes 3, 3 sealed in the hermetic vessel with facing each other at a distant of 5 mm or less; and a discharge medium substantially containing no mercury, sealed in the hermetic vessel 1, and containing first halides mainly including scandium halide and sodium halide, a second halide for mainly providing a lamp voltage and a xenon gas at 5 atmospheres or higher at a temperature of 25° C., the amounts of scandium halide and sodium halide sealed in the hermetic vessel satisfying the formula of 0.25<a / (a+b)<0.5, where reference character a denotes the mass of scandium halide and reference character b denotes the mass of sodium halide, in which, in a stable state, the metal halide lamp is turned on with a lamp power of 60 W or lower.
Owner:HARISON TOSHIBA LIGHTING CORP

High-pressure discharge lamp for motor vehicle headlamps

A high-pressure discharge lamp for motor vehicle headlamps having a mercury-free ionizable fill which consists of xenon with a cold filling pressure of at least 2 000 hPa and metal halides. The discharge vessel has a tubular section (10) which consists of a transparent ceramic and has an internal diameter which is less than or equal to 2 mm and inside which there are arranged electrodes with a spacing less than or equal to 10 mm.
Owner:PATENT TREUHAND GESELLSCHAFT FUR ELECTRIC GLUEHLAMPEN MBH

Metal halide lamp with fill-efficient two-part lead-through

The metal halide lamp with a ceramic discharge vessel (4) has sealing means at its two ends (6), an electrically conductive lead-through (9, 10; 30) being guided through these means in a vacuum-tight manner, to which lead-through an electrode (14) with a shank (15) is attached, which electrode projects into the interior of the discharge vessel. At least a front part, which faces toward the discharge, is designed as a component made from electrically conductive cermet which comprises a halide-resistant metallic phase and a ceramic phase of a ceramic base material. The fill comprises at least one halide of a rare-earth metal. At least on the front side of the component, at least part of the ceramic phase comprises the combination of the ceramic base material and one or more rare-earth metal oxides.
Owner:PATENT TREUHAND GESELLSCHAFT FUR ELECTRIC GLUEHLAMPEN MBH

Ultra high pressure mercury arc lamp

InactiveUS20080150431A1Reduces and eliminates arc gap erosionSimplifies driver functionHigh-pressure discharge lampsSolid cathode detailsUltra high pressureElectric light
A high pressure arc discharge lamp apparatus comprises a lamp and operating means therefor, the lamp comprising an envelope containing a dose of mercury and a pair of electrodes with their tips (32, 34) spaced apart from one another to define an arc gap. At least one of the electrode tips is formed with a hollow (44, 46) in its surface (40, 42) facing the other electrode, and the operating means includes means for driving the lamp at an A.C. frequency of at least 200 Hz.
Owner:GENERAL ELECTRIC CO

Light source unit, method of manufacturing light source unit, and projector

A light source unit including an arc tube having a light emitting section, sealed sections, an elliptic reflector, and a secondary reflecting mirror to cover the front side of the light emitting sections and reflect a luminous flux radiated from the light emitting section toward the elliptic reflector. The center of discharging emission from the arc tube is disposed at a first focal position of the elliptic reflector, and the secondary reflecting mirror is configured as a separate member from the arc tube, so that the outer peripheral portion of the secondary reflecting mirror is accommodated within a circular cone connecting a second focal position of the elliptic reflector and the distal end of the front sealed section of the arc tube when being mounted to the front sealed section of the arc tube.
Owner:SEIKO EPSON CORP

Microcavity and microchannel plasma device arrays in a single, unitary sheet

An array of microcavity plasma devices is formed in a unitary sheet of oxide with embedded microcavities or microchannels and embedded metal driving electrodes isolated by oxide from the microcavities or microchannels and arranged so as to generate sustain a plasma in the embedded microcavities or microchannels upon application of time-varying voltage when a plasma medium is contained in the microcavities or microchannels.
Owner:THE BOARD OF TRUSTEES OF THE UNIV OF ILLINOIS

Method for cooling an arc lamp

A xenon arc lamp for a motion picture projector is cooled by providing the anode end of the lamp with a shroud that forms part of a support for that end of the lamp. Cooling air flows into the shroud along the support arm and enters the shroud through a slot in its side wall. The shroud provides an annular air space around the anode end of the lamp and has an annular air outlet through which the cooling air leaves as a "sheet" of laminar air flow which tends to adhere to the surface of the bulb, thereby providing precise cooling. In this way, arc instability is avoided or minimized, while lamp life is extended.
Owner:IMAX CORP

Ceramic automotive high intensity discharge lamp

A high intensity discharge lamp, the lamp including a light emitting vessel having a wall made of ceramic material that defines an inner space with a first end portion having a respective first opening formed therein and a second end portion having a respective second opening formed therein, two discharge electrodes, with a first electrode extending therethrough the first opening of the first end portion of the vessel and a second electrode extending therethrough the second opening of the second end portion of the vessel, together forming a gap between ends of the discharge electrodes positioned within the vessel, wherein the light emitting vessel defines an inner space characterized by an inner diameter ranging from and including 1 millimeters to 3 millimeters and an inner length between and including 5 millimeters to 10 millimeters, wherein the wall of the vessel has a thickness ranging between and including 0.3 millimeters to 0.8 millimeters, wherein each tip of the electrodes within the vessel have a shank diameter ranging between and including 0.2 millimeters to 0.55 millimeters, and wherein the gap between the ends of the electrodes positioned within the vessel is smaller than 4 millimeters.
Owner:GENERAL ELECTRIC CO

Short-arc high-pressure discharge lamp for digital projection technologies

InactiveUS20020074943A1Convenient lightingRatio of the output light flux to the incoming power, is significantly degradedDischarge tube luminescnet screensLamp detailsOptoelectronicsHigh pressure
In a short-arc high-pressure discharge lamp (1) with a xenon fill for digital projection purposes, the separation L in mm of the two mutually facing end sections (6a, 8c) of the cathode (6) and the anode (8) when the lamp is hot is given by the relationship 0.8xP<=L<=1xP+1, where P is the lamp power in kW. Further, the diameter D of the circular-cylindrical middle section (8a) of the anode (8) in mm obeys the relationship D>=2.1xL+10.
Owner:PATENT TREUHAND GESELLSCHAFT FUR ELECTRIC GLUEHLAMPEN MBH

Light source device and projector

InactiveUS20070189016A1Prolong lifeReducing bias of temperature distributionTelevision system detailsPoint-like light sourceLight beamOptoelectronics
A light source device includes: a light source lamp having a light-emitting tube with a discharge space and a pair of electrodes disposed in the discharge space of the light-emitting tube; a reflector extending in a substantially concave shape in section, the reflector reflecting a light beam irradiated from the light source lamp; and a sub-reflection mirror having a reflection surface that is disposed to face a reflection surface of the reflector, the sub-reflection mirror reflecting a part of the light beam irradiated from the light source lamp toward the discharge space. The light-emitting tube has a light-emitting section having the discharge space therein and sealing sections provided on both sides of the light-emitting section. The sub-reflection mirror is formed in a shape of a bowl that covers the light-emitting section of the light-emitting tube, the sub-reflection mirror having an opening for mounting the sub-reflection mirror to the light-emitting tube by allowing one of the sealing sections of the light-emitting tube to be inserted thereinto. A heat insulating member is provided to at least a part of the light-emitting section and the other one of the sealing sections of the light-emitting tube.
Owner:SEIKO EPSON CORP

High-pressure mercury lamp

A high-pressure mercury lamp includes an arc tube, and a pair of electrodes is provided in a discharge space of the arc tube. In the discharge space, mercury and xenon gas are sealed. The amount of mercury per unit volume that is to be sealed in the discharge space is within a range of 0.12 mg / mm3 to 0.35 mg / mm3. A pressure of the xenon gas in the discharge space is within a range of 2.0x105 Pa to 2.0x106 Pa.
Owner:PANASONIC CORP

Ultrahigh pressure discharge lamp of the short arc type with improved metal foil to electrode connection arrangement

An arrangement with a relatively high pressure tightness in a super-high pressure mercury lamp which is operated with an extremely high mercury vapor pressure is achieved in accordance with the invention in a super-high pressure discharge lamp of the short arc type having a light emitting part in which a pair of electrodes are disposed opposite each other and which is filled with at least 0.15 mg / mm3 mercury; and side tube parts which extend from each side of the light emitting part and in each of which a respective one of the electrodes is partially hermetically sealed and is connected to a metal foil, by the area of the respective metal foil which is connected to the respective electrode has a smaller width than the width in the remaining area of the metal foil, the area with the smaller width wrapping at least partially around the outside surface of the electrode.
Owner:USHIO DENKI KK

Illumination device and projector equipping the same

An illumination device including a light-emitting tube having a light-emitting member in which light emission is carried out between a pair of electrodes and sealing members located on both sides of the light-emitting member, a first reflecting mirror to hold the light-emitting tube, reflect the light emitted from the light-emitting tube, and direct the light forward, and a transparent plate disposed in a distal end portion of the first reflecting mirror, a second reflecting mirror that encloses a front portion of the light-emitting member and reflects the light from the light-emitting member toward the first reflecting mirror being fixed to at least one of the sealing member and the transparent plate, the transparent plate and the second reflecting mirror are brought into contact or fixedly attached to each other, and at least one of the transparent plate and the second reflecting mirror is brought into contact or fixedly attached to the sealing member.
Owner:SEIKO EPSON CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products