Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1534results about "Incadescent envelopes/vessels" patented technology

Organometallic complex, organic EL element and organic EL display

An organic EL element includes an organometallic complex including a rhenium atom; one ligand which has a coordinated nitrogen atom and a coordinated oxygen atom, each coordinated with the rhenium atom, and has at least one π conjugation part; and the other ligand coordinated with the rhenium atom in such a way that the ligand saturates the coordination number of the rhenium atom and the charge of the whole organometallic complex is neutral.
Owner:FUJIFILM HLDG CORP +1

Luminous lamp having an ultraviolet filtering and explosion proof thin film

A luminous lamp having an ultraviolet filtering and explosion-proof thin film is disclosed. An outside of a lamp is coated by a transparent layer which comprises phosphor powder. Energy generated by the lamp is absorbed by the phosphor powder while the lamp is shining. The phosphor powder would release energy to shot brilliance, so as to provide auxiliary lighting after turning off the lamp. Additionally, the phosphor powder can absorb harmful ultraviolet and other harmful radiations with shorter wavelengths to be one part of the thin film for filtering harmful radiations. The harmful ultraviolet can be transformed by the phosphor powder into visible light to red shift radiations with short wavelengths; hence the harmful radiations with shorter wavelengths can be eliminated. The illumination of visible light can be further increased. The transparent layer can catch broken fragments of the outside of the lamp to decrease accidents when the lamp is broken.
Owner:NANOFORCE TECH CORP

Organic element for electroluminescent devices

Disclosed is an electroluminescent device comprising a light-emitting layer containing a light emitting material that contains an organometallic complex comprising a metal selected from the group consisting of Pt, Pd and Ir, and a tridentate (N{circumflex over ( )}C{circumflex over ( )}N) ligand, wherein the tridentate (N{circumflex over ( )}C{circumflex over ( )}N) ligand represents a ligand that coordinates to the metal through a nitrogen donor bond, a carbon-metal bond, and a nitrogen donor bond, in that order, wherein at least one of the nitrogen donors is part of an aromatic ring or an imine group. The invention also includes a display or room lighting device employing the device of the invention and a process of emitting light from the device of the invention. The device of the invention provides good luminance efficiency.
Owner:GLOBAL OLED TECH

Organic electroluminescent devices

Disclosed is an electroluminescent device comprising a cathode and anode, and therebetween, at least two light-emitting layers wherein the first layer, layer A, comprises a phosphorescent light-emitting organometallic compound comprising iridium and an isoquinoline group and a second layer, layer B, comprising a light-emitting material. Such devices provide useful white light emissions.
Owner:EASTMAN KODAK CO

Optical interference display panel

An optical interference display panel is disclosed that has a substrate, an optical interference reflection structure, and an opaque protection structure. The optical interference reflection structure has many color-changeable pixels and is formed on the substrate. The opaque protection structure is adhered and fixed onto the substrate with an adhesive and encloses the optical interference reflection structure between the substrate and the opaque protection structure. The opaque protection structure blocks and / or absorbs light, and light is thus not emitted outward by passing through defects in the optical interference reflection structure. Moreover, the opaque protection structure and the adhesive also prevent the optical interference reflection structure from being damaged by an external environment.
Owner:SNAPTRACK

Discharge lamp

The object of this invention is to prevent surface discharge even when a high voltage is applied in a dielectric-barrier discharge lamp or a capacitively coupled high frequency discharge lamp with no electrodes in a discharge space. Ribbon foil electrodes 3 are embedded in the wall of a quartz discharge vessel 1. The discharge vessel 1 is disposed such that the foil electrodes 3 face each other on both sides of the axis of the quartz discharge vessel 1. It may be disposed such that the foil electrodes 3 have a truncated V-shaped cross-section. The single tube quartz discharge vessel 1 is filled with discharge gas to form excimer molecules by dielectric barrier discharge or capacitively coupled high-frequency discharge.
Owner:ORC MFG

Phosphor based light sources utilizing total internal reflection

A LED package including an LED that emits excitation light at an excitation light wavelength and a layer of phosphor material positioned to receive the excitation light and having a first index of refraction at the excitation light wavelength. The phosphor material emits visible light at a visible light wavelength when illuminated with the excitation light. An interference reflector is positioned adjacent to the layer of phosphor material and a TIR promoting layer is in contact with the layer of phosphor material. The TIR promoting layer has a second index of refraction at the excitation light wavelength that is less than the first index of refraction at the excitation light wavelength.
Owner:3M INNOVATIVE PROPERTIES CO

Phosphorescent compound, a phosphorescent composition and an organic light-emitting device

An organic polymeric phosphorescent compound that is stable and emits very highly efficient phosphorescence, used as a material of an organic light-emitting device is provided. Also, an organic light-emitting device employing the organic polymeric phosphorescent compound's provided. The phosphorescent compound according to the present invention is a neutral organic polymeric phosphorescent compound emitting phosphorescence and used in an organic light-emitting device, characterized in that a phosphorescent unit being a repeat unit for emitting phosphorescence and a carrier transporting unit being a repeat unit for transporting a carrier are included.
Owner:NIPPON HOSO KYOKAI +1

UV reflectors and UV-based light sources having reduced UV radiation leakage incorporating the same

UV reflectors incorporated in UV LED-based light sources reduce the amount of UV radiation emission into the surroundings and increase the efficiency of such light sources. UV reflectors are made of nanometer-sized particles having a mean particle diameter less than about one-tenth of the wavelength of the UV light emitted by the UV LED, dispersed in a molding or casting material surrounding the LED. Other UV reflectors are series of layers of materials having alternating high and low refractive indices; each layer has a physical thickness of one quarter of the wavelength divided by the refractive index of the material. Nanometer-sized textures formed on a surface of the multilayered reflector further reduce the emission of UV radiation into the surroundings. UV LED-based light sources include such a multilayered reflector disposed on an encapsulating structure of a transparent material around a UV LED, particles of a UV-excitable phosphor dispersed in the transparent material. Alternatively, the transparent material also includes nanometer-sized particles of a UV-radiation scattering material.
Owner:GE LIGHTING SOLUTIONS LLC

High efficiency and long life optical spectrum conversion device and process

A spectral conversion device including a plurality of discrete units dyed with a photoluminescent material at a concentration greater than or equal to an amount sufficient to absorb and convert substantially all input light from a light source to a desired output spectrum, and a coating material disposed around the discrete units, wherein the coating material binds the plurality of discrete units to form a matrix, wherein when the plurality of discrete units are positioned over the light source, the input light passing through the transparent discrete units is not converted, and the input light passing through the doped discrete units is converted to red and green wavelengths, further wherein the emitted input light and the converted red and green light correspond to the desired output spectrum to produce one or more colors. An associated method and an associated device used with flat panel image displays are also provided.
Owner:JONES GARY WAYNE

Tuned microcavity color OLED display

A color OLED display having at least three different colored microcavity pixels including a light-reflective structure and a semitransparent structure comprising an array of light-emitting microcavity pixels each having one or more common organic light-emitting layers, said light-emitting layer(s) having first, second, and third light-emitting materials that produce different light spectra. The first light-emitting material producing light has a first spectrum portion that is substantially contained within a first color of the array, the second light-emitting material producing light has a second spectrum portion that is substantially contained within a second color that is different from the first color, and the third light-emitting material producing light has a third spectrum portion that is substantially contained within a third color that is different from the first and second colors.
Owner:GLOBAL OLED TECH

Phosphor Composition and Method for Producing the Same, and Light-Emitting Device Using the Same

A light-emitting device is produced using a phosphor composition containing a phosphor host having as a main component a composition represented by a composition formula: aM3N2.bAlN.cSi3N4, where“M” is at least one element selected from the group consisting of Mg, Ca, Sr, Ba, and Zn, and “a”, “b”, and “c” are numerical values satisfying 0.2≦a / (a+b)≦0.95, 0.05≦b / (b+c)≦0.8, and 0.4≦c / (c+a)≦0.95. This enables a light-emitting device emitting white light and satisfying both a high color rendering property and a high luminous flux to be provided.
Owner:SHENZHEN JUFEI OPTOELECTRONICS CO LTD

Electroluminescence device, planar light source and display using the same

The present invention provides an organic electroluminescence device including an organic layer comprising an emissive layer; a pair of electrodes comprising an anode and a cathode, and sandwiching the organic layer, wherein at least one of the electrodes is transparent; a transparent layer provided adjacent to a light extracting surface of the transparent electrode; and a region substantially disturbing reflection and retraction angle of light provided adjacent to a light extracting surface of the transparent layer or in an interior of the transparent layer, wherein the transparent layer has a refractive index substantially equal to or more than the refractive index of the emissive layer.
Owner:NITTO DENKO CORP

Thermally-conductive plastic articles having light reflecting surfaces

A thermally-conductive polymer composition suitable for making molded reflector articles having light-reflecting surfaces is provided. The composition comprises: a) about 20% to about 80% by weight of a base polymer matrix such as polycarbonate; and b) about 20% to about 80% by weight of a thermally-conductive carbon material such as graphite. The composition can be used to make reflector articles such as housings for automotive tail lamps, head lamps, and other lighting fixtures. A method for manufacturing reflector articles is also provided.
Owner:TICONA POLYMERS INC

Phosphor based light sources having a non-planar long pass reflector

A light source includes an LED that emits excitation light, an optically transparent body, a phosphor material positioned to receive the excitation light and disposed on or in the optically transparent body, the phosphor material emitting visible light when illuminated with the excitation light, and a non-planar flexible multilayer reflector that reflects the excitation light and transmits visible light. The non-planar polymeric multilayer reflector is positioned to reflect LED light onto the phosphor material.
Owner:3M INNOVATIVE PROPERTIES CO

Stacked OLED display having improved efficiency

An OLED device, having a pixel includes a plurality of individually addressable first white light emitting elements; a corresponding plurality of color filters located over the first white light emitting elements to filter the light emitted by the first white light emitting elements; and a second separately addressable white light emitting element located over the color filters for passing the filtered white light and emitting white light.
Owner:GLOBAL OLED TECH

Organic electroluminescent element and organic electroluminescent display device

An organic electroluminescent element comprising a cathode, an anode, an intermediate unit arranged between a cathode and an anode, a first light emitting unit arranged between a cathode and an intermediate unit, and a second light emitting unit arranged between an anode and an intermediate unit, wherein an electron extracting layer for extracting an electron from an adjacent layer adjoining a cathode side is provided in an intermediate unit, an absolute value of an energy level of a lowest unoccupied molecular orbital (LUMO) of an electron extracting layer |LUMO(A)|, and an absolute value of an energy level of a highest occupied molecular orbital (HOMO) of the adjacent layer |HOMO(B)| are in the relationship of |HOMO(B)|−|LUMO(A)|≦1.5 eV, and an intermediate unit supplies a hole generated by extraction of an electron from an adjacent layer by an electron extracting layer and, at the same time, supplies the extracted electron to a second light emitting unit.
Owner:SANYO ELECTRIC CO LTD

Organometallic materials and electroluminescent devices

An electroluminescent device comprises a light-emitting layer containing an organometallic compound comprising a metal and a ligand that coordinates to the metal through at least four bonds as represented by Formula (1) wherein at least one is a carbon-metal bond: MX)n  (1) wherein M represents a metal, X represents an independently selected atom, n≧4, at least one X is carbon, and all X are linked to form a multidentate ligand.
Owner:EASTMAN KODAK CO

Apparatus and method for improved illumination area fill

A reflector for a light source, such as an LED, is provided with a shape which efficiently collects and directs energy to an illumined surface whereby almost 100% of the light is collected and distributed into a designer composite beam. The shape in one embodiment is comprised of three zones beginning with a parabolic surface of revolution at the base of the reflector, followed by a transition or straight conic zone and ending with an elliptical zone. In another embodiment the reflector shape is determined according to a transfer function which allows for arbitrary designer control of the reflected rays at each point on the reflector, which when combined with direct radiation from the source, results in a designer controlled composite beam or illumination. The device is more than 90% energy efficient and allows replacement of higher power, less energy efficient light sources with no loss in illumination intensity.
Owner:SIGNIFY HLDG BV

Illumination systems utilizing light emitting diodes and light recycling to enhance output radiance

An illumination system has a light source that is at least partially enclosed within a light-recycling envelope. The light source is a light-emitting diode that emits light, and a fraction of that light will exit the light-recycling envelope through an aperture. The light-recycling envelope recycles part of the light emitted by the light source back to the light source in order to enhance the output radiance of the light exiting the illumination system.
Owner:GOLDENEYE

Brightness and contrast enhancement of direct view emissive displays

Emissive displays can include a plurality of independently operable light emitters that emit light through one or more transmissive layers. The emissive displays further include elements disposed between the light emitters and the transmissive layers to frustrate total internal reflections that can occur at one or more of the interfaces created by the transmissive layers, such as at an interface between the light emitter and a transmissive layer or at an interface between a transmissive layer and air. By frustrating total internal reflections, the brightness of the emissive display can be enhanced. Elements for frustrating total internal reflections include volume diffusers, surface diffusers, microstructures, and combinations of these or other suitable elements.
Owner:3M INNOVATIVE PROPERTIES CO

Light emitting diode, backlight assembly having the same and method thereof

A light emitting diode (LED). In one embodiment, the LED comprises a base including a cavity, an LED chip disposed on a bottom of the cavity and configured to generate a first light, and a light conversion layer. The light conversion layer includes an upper substrate, a lower substrate and a wavelength conversion particle. The light conversion layer is configured to convert a portion of the first light into a second light according to light emitted by the wavelength conversion particle. Furthermore, the light conversion layer is disposed on an upper surface of the base.
Owner:SAMSUNG DISPLAY CO LTD

Light-emitting device and lighting apparatus incorporating same

A light-emitting device is provided that can extract light in all directions and that has wide directivity. This light-emitting device includes: an elongated bar-shaped package extending sideways, the package being formed such that a plurality of leads are formed integrally with a first resin with part of the leads exposed; a light-emitting element that is fixed onto at least one of the leads and that is electrically connected to at least one of the leads; and a second resin sealing the light-emitting element. In the light-emitting device, the first resin and the second resin are formed of optically transparent resin, and the leads have outer lead portions used for external connection and protruding sideways from both left and right ends of the package.
Owner:USHIO DENKI KK

LED light source with field-of-view-controlling optics

Pixels for a large video display which employs solid-state emitters, such as colored light emitting diodes, as light source are formed by outfitting each colored solid state emitter within the pixel with an individually tailored miniature intensity-enhancing optical system. Each of these miniature optical systems comprises a set of four wide field-of-view Lambertian reflectors 34, a pair of narrow field-of-view Lambertian reflectors 36, and a beam-shaping lens 38. The miniature intensity-enhancing optical system can be specifically designed to restrict emission in the vertical field-of-view, while providing a Lambertian intensity dependence throughout an unrestricted horizontal view. For example, the field-of-view in the vertical direction may be limited to about .+-.30.degree. while the field-of-view is about .+-.90.degree. in the horizontal direction.
Owner:TELEDYNE LIGHTING & DISPLAY PRODS

Light emitting device

Disclosed herein is a light emitting device. The light emitting device includes a light emitting diode disposed on a substrate to emit light of a first wavelength. A transparent molding part encloses the LED, a lower wavelength conversion material layer is disposed on the transparent molding part, and an upper wavelength conversion material layer is disposed on the lower wavelength conversion material layer. The lower wavelength conversion material layer contains a phosphor converting the light of the first wavelength into light of a second wavelength longer than the first wavelength, and the upper wavelength conversion material layer contains a phosphor converting the light of the first wavelength into light of a third wavelength, which is longer than the first wavelength but shorter than the second wavelength. Light produced via wavelength conversion is prevented from being lost by the phosphor. Light emitting devices including a multilayer reflection mirror are also disclosed.
Owner:SEOUL SEMICONDUCTOR

Phosphor composition and method for producing the same, and light-emitting device using the same

A light-emitting device is produced using a phosphor composition containing a phosphor host having as a main component a composition represented by a composition formula: aM3N2.bAlN.cSi3N4, where “M” is at least one element selected from the group consisting of Mg, Ca, Sr, Ba, and Zn, and “a”, “b”, and “c” are numerical values satisfying 0.2≦a / (a+b)≦0.95, 0.05≦b / (b+c)≦0.8, and 0.4≦c / (c+a)≦0.95. This enables a light-emitting device emitting white light and satisfying both a high color rendering property and a high luminous flux to be provided.
Owner:SHENZHEN JUFEI OPTOELECTRONICS CO LTD

OLED device having microcavity gamut subpixels and a within gamut subpixel

An OLED device including an array of light emitting pixels, each pixel including subpixels having organic layers including at least one emissive layer that produces light and spaced electrodes, and wherein there are at least three gamut subpixels that produce colors which define a color gamut and at least one subpixel that produces light within the color gamut produced by the gamut subpixels; and wherein at least one of the gamut subpixels includes a reflector and a semitransparent reflector which function to form a microcavity.
Owner:GLOBAL OLED TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products