Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

415 results about "Waiting period" patented technology

What is a Waiting Period. A waiting period is the amount of time an insured must wait before some or all of their coverage comes into effect. The insured may not receive benefits for claims filed during the waiting period. Waiting periods may also be known as elimination periods and qualifying periods.

System and method for replicating data in resource sets

Described is a system and method for replicating each of a set of resources to a subject computer in a replica set prior to making use of a resource in the set of resources. The set of resources includes resources that are dependent upon each other for a proper functioning of the group. A manifest file that identifies each resource in a group of interrelated resources is used. The manifest file is generated at one computer in the replica set (typically the computer at which a modification to one of the interrelated resources occurred). When the modification occurs to one of the set of resources, the manifest file is transmitted (e.g., itself replicated) to each computer in the replica set. The manifest file includes an indicator that identifies the manifest file as a special file. When received at another computer in the replica set, a service evaluates the manifest file to identify whether the appropriate versions of the identified resources exist at the receiving computer. If not, the service at that computer awaits the receipt of each resource. The wait period may include delaying the execution of an application associated with (or even included within) the manifest file from launching. Alternatively, the FRS could simply disallow access to one or more resources identified in the manifest file until all have arrived. When all have arrived, the FRS releases control of the identified resources, which may then operate or be accessed in the ordinary manner.
Owner:MICROSOFT TECH LICENSING LLC

Solving the distal reward problem through linkage of stdp and dopamine signaling

In Pavlovian and instrumental conditioning, rewards typically come seconds after reward-triggering actions, creating an explanatory conundrum known as the distal reward problem or the credit assignment problem. How does the brain know what firing patterns of what neurons are responsible for the reward if (1) the firing patterns are no longer there when the reward arrives and (2) most neurons and synapses are active during the waiting period to the reward? A model network and computer simulation of cortical spiking neurons with spike-timing-dependent plasticity (STDP) modulated by dopamine (DA) is disclosed to answer this question. STDP is triggered by nearly-coincident firing patterns of a presynaptic neuron and a postsynaptic neuron on a millisecond time scale, with slow kinetics of subsequent synaptic plasticity being sensitive to changes in the extracellular dopamine DA concentration during the critical period of a few seconds after the nearly-coincident firing patterns. Random neuronal firings during the waiting period leading to the reward do not affect STDP, and hence make the neural network insensitive to this ongoing random firing activity. The importance of precise firing patterns in brain dynamics and the use of a global diffusive reinforcement signal in the form of extracellular dopamine DA can selectively influence the right synapses at the right time.
Owner:NEUROSCI RES FOUND

Solving the distal reward problem through linkage of STDP and dopamine signaling

In Pavlovian and instrumental conditioning, rewards typically come seconds after reward-triggering actions, creating an explanatory conundrum known as the distal reward problem or the credit assignment problem. How does the brain know what firing patterns of what neurons are responsible for the reward if (1) the firing patterns are no longer there when the reward arrives and (2) most neurons and synapses are active during the waiting period to the reward? A model network and computer simulation of cortical spiking neurons with spike-timing-dependent plasticity (STDP) modulated by dopamine (DA) is disclosed to answer this question. STDP is triggered by nearly-coincident firing patterns of a presynaptic neuron and a postsynaptic neuron on a millisecond time scale, with slow kinetics of subsequent synaptic plasticity being sensitive to changes in the extracellular dopamine DA concentration during the critical period of a few seconds after the nearly-coincident firing patterns. Random neuronal firings during the waiting period leading to the reward do not affect STDP, and hence make the neural network insensitive to this ongoing random firing activity. The importance of precise firing patterns in brain dynamics and the use of a global diffusive reinforcement signal in the form of extracellular dopamine DA can selectively influence the right synapses at the right time.
Owner:NEUROSCI RES FOUND

Apparatus and method for fair message exchanges in distributed multi-player games

The Fair-Order Service of the present invention delivers action messages to the server as soon as it is feasible. Because action messages from different players exhibit different reaction times with respect to an update message, the Fair-Ordering Service executed at the server dynamically enforces a sufficient waiting period on each action message to guarantee the fair processing of all action messages. In reality, the waiting period at the server is bounded because of the real-time nature of interactive games. The algorithms that offer Fair Ordering Service take into consideration delayed and out-of-order action messages. When action messages corresponding to multiple update messages are interleaved, the Fair-Ordering Service matches the action message to the appropriate update message. It accomplishes this by maintaining a window of update messages and using the reaction times for an action message for each of the update messages in the window. This enables state changes at the game server to be performed with fairness to all the players. The Fair-Order Service invention is based on a framework that uses a proxy architecture making it transparent to any specific game application. The service is well suited to client-server based, online multi-player games, where a fair order of player actions is critical to the game outcome.
Owner:RPX CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products