Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

443 results about "Multi carrier modulation" patented technology

Multi-carrier modulation or MCM is an approach to data transmission that involves segregating the data into several more or less equal components. The individual components are then routed across different carrier signals. At the point of termination, the individual components are reassembled and delivered.

High efficiency high performance communications system employing multi-carrier modulation

Transmitter and receiver units for use in a communications system and configurable to provide antenna, frequency, or temporal diversity, or a combination thereof, for transmitted signals. The transmitter unit includes a system data processor, one or more modulators, and one or more antennas. The system data processor receives and partitions an input data stream into a number of channel data streams and further processes the channel data streams to generate one or more modulation symbol vector streams. Each modulation symbol vector stream includes a sequence of modulation symbol vectors representative of data in one or more channel data streams. Each modulator receives and modulates a respective modulation symbol vector stream to provide an RF modulated signal, and each antenna receives and transmits a respective RF modulated signal. Each modulator may include an inverse (fast) Fourier transform (IFFT) and a cyclic prefix generator. The IFFT generates time-domain representations of the modulation symbol vectors, and the cyclic prefix generator repeats a portion of the time-domain representation of each modulation symbol vector. The channel data streams are modulated using multi-carrier modulation, e.g., OFDM modulation. Time division multiplexing (TDM) may also be used to increase flexibility.
Owner:QUALCOMM INC

Dynamic bandwidth allocation

InactiveUS7069577B2Prevents untoward spectral effectMore balancedError preventionModulated-carrier systemsFiberModem device
The communication system includes a hybride fiber / coax distribution network. A head end provides for downstream transmission of telephony and control data in a first frequency bandwidth over the hybrid fiber / coax distribution network and reception of upstream telephony and control data in a second frequency bandwidth over the hybrid fiber / coax distribution network. The head end includes head end multicarrier modem for modulating at least downstream telephony information on a plurality of orthogonal carriers in the first frequency bandwidth and demodulating at least upstream telephony information modulated on a plurality of orthogonal carriers in the second frequency bandwidth. The head end further includes a controller operatively connected to the head end multicarrier modem for controlling transmission of the downstream telephony information and downstream control data and for controlling receipt of the upstream control data and upstream telephony information. The system further includes service units, each service unit operatively connected to the hybrid fiber / coax distribution network for upstream transmission of telephony and control data in the second frequency bandwidth and for receipt of the downstream control data and telephony in the first frequency bandwidth. Each service unit includes a service unit multicarrier modem for modulating at least the upstream telephony information on at least one carrier orthogonal at the head end terminal to another carrier in the second frequency bandwidth and for demodulating at least downstream telephony information modulated on at least a band of a plurality of orthogonal carriers in the first frequency bandwidth. Each service unit also includes a controller operatively connected to the service unit multicarrier modem for controlling the modulation of and demodulation performed by the service unit multicarrier modem. A method of monitoring communication channels, a distributed loop method for adjusting transmission characteristics to allow for transmission of data in a multi-point to point communication system, a polyphase filter technique for providing ingress protection and a scanning method for identifying frequency bands to be used for transmission by service units are also included. Also provided is a method and apparatus for performing a Fast Fourier Transform (FFT). In one embodiment, a scalable FFT system is built using a novel dual-radix butterfly core.
Owner:HTC CORP

Receiver

A receiver for receiving a multi-carrier modulated symbol is arranged to suppress a burst noise signal which may have been induced in the symbol. The symbol includes a plurality of pilot carriers as well as a plurality of data bearing carriers. The receiver comprises a burst noise detection processor operable to detect the temporal position of the burst noise signal which may have corrupted the symbol within a period occupied by the symbol, and a channel estimation processor operable to generate a decimated noise signal corresponding to the burst noise, from the recovered pilot carriers. An inverse Fourier transform of the decimated noise signal provides a plurality of estimated versions of the burst noise signal. A noise signal processor is operable to generate an estimate of the burst noise signal by identifying one of the plurality of estimated burst noise versions at the detected temporal location of the burst noise signal. The noise signal processor may be operable to set the signal samples other than the identified estimate of the burst noise signal to zero and to perform a Fourier transform, to provide a frequency domain version of the burst noise signal, thereby interpolating the decimated noise signal. The frequency domain noise signal estimate may be cancelled from the symbol by a noise cancellation processor in the frequency domain, before data is recovered from the symbol. The receiver finds application for Digital Video Broadcasting in which COFDM is employed.
Owner:REDWOOD TECHNOLOGIES LLC +1

Method for reducing peak-to-average power ratio of filter bank multi-carrier system

InactiveCN101867547AGuaranteed low peak-to-average ratio requirementsImprove performanceMulti-frequency code systemsTime domainCommunications system
The invention provides a method for reducing peak-to-average power ratio of a filter bank multi-carrier system, and relates to the field of multi-carrier modulation method. The method comprises the following steps: the analysis of main factors affecting the peak-average power ratio of the FBMC system through the establishment of the FBMC system model and the definition of the peak-average power ratio of the FBMC system, the construction of an FSLM method and the check analysis of Monte Carlo simulation experiments, and is characterized in that: a frame selection mapping method is called as the FSLM method, is a signal non-distortion technique, selects sequences for FBMC signal frames and design frames, constructs FBMC carrier frame signals which have the same information and are independent from one another according to the frame selection sequences, and then selects a frame of symbols allowing the time domain signals to have minimum PAPR, and the method can reduce the PAPR of the FBMC system without distortion, and effectively reduce the PAPR of the FBMC system. The invention can ensure that the requirements of the low peak-to-average power ratio of the system, and further optimize the performance of the system. In practice, the invention can provide certain reference value for the application of Beyond3G, 4G, 802.16 and other communications systems.
Owner:UNIV OF SCI & TECH BEIJING
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products