Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

649 results about "RF switch" patented technology

An RF Switch or Microwave Switch is a device to route high frequency signals through transmission paths. RF (radio frequency) and microwave switches are used extensively in microwave test systems for signal routing between instruments and devices under test (DUT). Incorporating a switch into a switch matrix system enables you to route signals from multiple instruments to single or multiple DUTs. This allows multiple tests to be performed with the same setup, eliminating the need for frequent connects and disconnects. The entire testing process can be automated, increasing the throughput in high-volume production environments.

Programmable radio frequency sub-system with integrated antennas and filters and wireless communication device using same

The present invention relates generally to radio communication devices. More particularly, the present invention relates to a programmable radio frequency (RF) sub-system and wireless communications devices using such an integrated antenna / filter sub-system. In one embodiment, the programmable RF front end subassembly includes two antennas, RF filter sections that are integral to each antenna, and a programmable logic device as an antenna control unit. Each antenna consists of a planar inverted "F" antenna (PIFA) that is tuned to operate over a range of frequencies using voltage variable capacitors or RF switches that connect various capacitive loads in order to achieve the desired resonant frequencies. The wireless communication device further includes a control circuit coupled to the antenna to provide the control signals.
Owner:E TENNA CORP

Symmetrically and asymmetrically stacked transistor group RF switch

A silicon-on-insulator (SOI) RF switch adapted for improved power handling capability using a reduced number of transistors is described. In one embodiment, an RF switch includes pairs of switching and shunting stacked transistor groupings to selectively couple RF signals between a plurality of input / output nodes and a common RF node. The switching and shunting stacked transistor groupings comprise one or more MOSFET transistors connected together in a “stacked” or serial configuration. In one embodiment, the transistor groupings are “symmetrically” stacked in the RF switch (i.e., the transistor groupings all comprise an identical number of transistors). In another embodiment, the transistor groupings are “asymmetrically” stacked in the RF switch (i.e., at least one transistor grouping comprises a number of transistors that is unequal to the number of transistors comprising at least one other transistor grouping). The stacked configuration of the transistor groupings enable the RF switch to withstand RF signals of varying and increased power levels. The asymmetrically stacked transistor grouping RF switch facilitates area-efficient implementation of the RF switch in an integrated circuit. Maximum input and output signal power levels can be withstood using a reduced number of stacked transistors.
Owner:PSEMI CORP

Symmetrically and asymmetrically stacked transistor grouping RF switch

A silicon-on-insulator (SOI) RF switch adapted for improved power handling capability using a reduced number of transistors is described. In one embodiment, an RF switch includes pairs of switching and shunting stacked transistor groupings to selectively couple RF signals between a plurality of input / output nodes and a common RF node. The switching and shunting stacked transistor groupings comprise one or more MOSFET transistors connected together in a “stacked” or serial configuration. In one embodiment, the transistor groupings are “symmetrically” stacked in the RF switch (i.e., the transistor groupings all comprise an identical number of transistors). In another embodiment, the transistor groupings are “asymmetrically” stacked in the RF switch (i.e., at least one transistor grouping comprises a number of transistors that is unequal to the number of transistors comprising at least one other transistor grouping). The stacked configuration of the transistor groupings enable the RF switch to withstand RF signals of varying and increased power levels. The asymmetrically stacked transistor grouping RF switch facilitates area-efficient implementation of the RF switch in an integrated circuit. Maximum input and output signal power levels can be withstood using a reduced number of stacked transistors.
Owner:PSEMI CORP

Tuning capacitance to enhance FET stack voltage withstand

An RF switch to controllably withstand an applied RF voltage Vsw, or a method of fabricating such a switch, which includes a string of series-connected constituent FETs with a node of the string between each pair of adjacent FETs. The method includes controlling capacitances between different nodes of the string to effectively tune the string capacitively, which will reduce the variance in the RF switch voltage distributed across each constituent FET, thereby enhancing switch breakdown voltage. Capacitances are controlled, for example, by disposing capacitive features between nodes of the string, and / or by varying design parameters of different constituent FETs. For each node, a sum of products of each significant capacitor by a proportion of Vsw appearing across it may be controlled to approximately zero.
Owner:PSEMI CORP

Switch circuit and method of switching radio frequency signals

A novel RF buffer circuit adapted for use with an RF switch circuit and method for switching RF signals is described. The RF switch circuit is fabricated in a silicon-on-insulator (SOI) technology. The RF switch includes pairs of switching and shunting transistor groupings used to alternatively couple RF input signals to a common RF node. The switching and shunting transistor grouping pairs are controlled by a switching control voltage (SW) and its inverse (SW_). The switching and shunting transistor groupings comprise one or more MOSFET transistors connected together in a “stacked” or serial configuration. The stacking of transistor grouping devices, and associated gate resistors, increase the breakdown voltage across the series connected switch transistors and operate to improve RF switch compression. A fully integrated RF switch is described including digital control logic and a negative voltage generator integrated together with the RF switch elements. In one embodiment, the fully integrated RF switch includes a built-in oscillator, a charge pump circuit, CMOS logic circuitry, level-shifting and voltage divider circuits, and an RF buffer circuit. Several embodiments of the charge pump, level shifting, voltage divider, and RF buffer circuits are described. The inventive RF switch provides improvements in insertion loss, switch isolation, and switch compression.
Owner:PSEMI CORP

Adaptive impedance matching apparatus, system and method with improved dynamic range

An embodiment of the present invention provides an apparatus, comprising an RF matching network connected to at least one RF input port and at least one RF output port and including one or more voltage or current controlled variable reactive elements; a voltage detector connected to the at least one RF output port via a variable voltage divider to determine the voltage at the at least one RF output port and provide voltage information to a controller that controls a bias driving circuit which provides voltage or current bias to the RF matching network; a variable voltage divider connected to the voltage detector and implemented using a multi-pole RF switch to select one of a plurality of different resistance ratios to improve the dynamic range of the apparatus; and wherein the RF matching network is adapted to maximize RF power transferred from the at least one RF input port to the at least one RF output port by varying the voltage or current to the voltage or current controlled variable reactive elements to maximize the RF voltage at the at least one RF output port.
Owner:NXP USA INC

Canceling harmonics in semiconductor RF switches

An RF switching circuit adapted to cancel selected harmonic signals. An unwanted harmonic signal Sh1 at a selected harmonic frequency Fsh of an operating frequency Fo exists in a signal Si conducted by the switching circuit, possibly produced by the switching circuit due to conduction through a first nonlinear impedance Znl(1). A compensating harmonic signal Sh2 is therefore generated by conduction via a nonlinear impedance Znl(2). Znl(1) may be due to parasitic conduction by “off” switching elements, while Znl(2) may be due to conduction by an “on” FET. The amplitude and / or phasing of Sh2 may be adjusted by selecting components for a network coupling Znl(2) to the conducted signal Si, such that Sh2 substantially cancels Sh1 across a target range of input power.
Owner:PSEMI CORP

Methods and apparatus for defining, storing, and identifying key performance indicators associated with an RF network

A system for assessing the state of an RF network includes a plurality of wireless devices coupled to the network and having one or more associated antennae, the wireless devices configured to process data received from a plurality of RF elements within range of the antennae. An RF switch is coupled to the network and configured to receive the data and transmit the data over the network. A first memory within the RF switch is configured to store a system state comprising a plurality of performance indicators, wherein each of the performance indicators is associated with an operational characteristic of one or more of the plurality of wireless devices. A second memory within the RF switch is configured to store a plurality of labeled data entries, the labeled data entries each including the system state and a user-entered identifier, wherein the user-entered identifier includes information related to the time at which the system state was selected. A display coupled to the network is configured to display a comparison of the system states.
Owner:SYMBOL TECH INC

MEMS RF switch

A capacitance coupled, transmission line-fed, radio frequency MEMS switch and its fabrication process using photoresist and other low temperature processing steps are described. The achieved switch is disposed in a low cost dielectric housing free of undesired electrical effects on the switch and on the transmission line(s) coupling the switch to an electrical circuit. The dielectric housing is provided with an array of sealable apertures useful for wet, but hydrofluoric acid-free, removal of switch fabrication employed materials and also useful during processing for controlling the operating atmosphere surrounding the switch—e.g. at a pressure above the high vacuum level for enhanced switch damping during operation. Alternative arrangements for sealing an array of dielectric housing apertures are included. Processing details including plan and profile drawing views, specific equipment and materials identifications, temperatures and times are also disclosed.
Owner:US SEC THE AIR FORCE THE

MEMS RF switch integrated process

A capacitance coupled, transmission line-fed, radio frequency MEMS switch and its fabrication process using photoresist and other low temperature processing steps are described. The achieved switch is disposed in a low cost dielectric housing free of undesired electrical effects on the switch and on the transmission line(s) coupling the switch to an electrical circuit. The dielectric housing is provided with an array of sealable apertures useful for wet, but hydrofluoric acid-free, removal of switch fabrication employed materials and also useful during processing for controlling the operating atmosphere surrounding the switch—e.g. at a pressure above the high vacuum level for enhanced switch damping during operation. Alternative arrangements for sealing an array of dielectric housing apertures are included. Processing details including plan and profile drawing views, specific equipment and materials identifications, temperatures and times are also disclosed.
Owner:THE UNITED STATES OF AMERICA AS REPRESETNED BY THE SEC OF THE AIR FORCE

Circuit and method for controlling charge injection in radio frequency switches

A circuit and method for controlling charge injection in a circuit are disclosed. In one embodiment, the circuit and method are employed in a semiconductor-on-insulator (SOI) Radio Frequency (RF) switch. In one embodiment, an SOI RF switch comprises a plurality of switching transistors coupled in series, referred to as “stacked” transistors, and implemented as a monolithic integrated circuit on an SOI substrate. Charge injection control elements are coupled to receive injected charge from resistively-isolated nodes located between the switching transistors, and to convey the injected charge to at least one node that is not resistively-isolated. In one embodiment, the charge injection control elements comprise resistors. In another embodiment, the charge injection control elements comprise transistors. A method for controlling charge injection in a switch circuit is disclosed whereby injected charge is generated at resistively-isolated nodes between series coupled switching transistors, and the injected charge is conveyed to at least one node of the switch circuit that is not resistively-isolated.
Owner:PEREGRINE SEMICONDUCTOR

Signal processor for use with a power amplifier in a wireless circuit

A signal processor has an input terminal and an output terminal for use in a wireless transmitter, for generating a radio frequency signal suitable for transmission, either with or without further power amplification. The signal processor separates an input signal into first and second processing paths, the first processing path generating a pulse train signal which is a digitised envelope signal, and the second processing path comprising phase processing means operable to generate a constant envelope phase signal. An RF switch is operable to switch the phase signal by means of the pulse train signal.
Owner:KK TOSHIBA

Switch circuit and method of switching radio frequency signals

InactiveUS20050017789A1Improving RF switch isolationRaise the compression pointTransistorSolid-state devicesMOSFETEngineering
A novel RF buffer circuit adapted for use with an RF switch circuit and method for switching RF signals is described. The RF switch circuit is fabricated in a silicon-on-insulator (SOI) technology. The RF switch includes pairs of switching and shunting transistor groupings used to alternatively couple RF input signals to a common RF node. The switching and shunting transistor grouping pairs are controlled by a switching control voltage (SW) and its inverse (SW_). The switching and shunting transistor groupings comprise one or more MOSFET transistors connected together in a “stacked” or serial configuration. The stacking of transistor grouping devices, and associated gate resistors, increase the breakdown voltage across the series connected switch transistors and operate to improve RF switch compression. A fully integrated RF switch is described including digital control logic and a negative voltage generator integrated together with the RF switch elements. In one embodiment, the fully integrated RF switch includes a built-in oscillator, a charge pump circuit, CMOS logic circuitry, level-shifting and voltage divider circuits, and an RF buffer circuit. Several embodiments of the charge pump, level shifting, voltage divider, and RF buffer circuits are described. The inventive RF switch provides improvements in insertion loss, switch isolation, and switch compression.
Owner:PSEMI CORP

Unpowered switch and bleeder circuit

A novel RF switch for switching radio frequency (RF) signals is disclosed. The RF switch may comprise both enhancement and depletion mode field-effect transistors (E-FETs and D-FETs) implemented as a monolithic integrated circuit (IC) on a silicon-on-insulator (SOI) substrate. The disclosed RF switch, with a novel bleeder circuit, may be used in RF applications wherein a selected switch state and performance are required when the switch and bleeder circuits are not provided with operating power (i.e., when the switch and bleeder circuits are “unpowered”).
Owner:PSEMI CORP

RF front-end apparatus in a TDD wireless communication system

A transmitting apparatus in a TDD wireless communication system is provided. In the transmitting apparatus, a circulator transmits a signal received from a power amplifier to an antenna feed line and transmits a signal received from the antenna feed line to a quarter-wave transmission line. The quarter-wave transmission line is installed in a reception path, for reception isolation in a transmission mode. An RF switch shorts the load of the quarter-wave transmission line to the ground or connects the load of the quarter-wave transmission line to an LNA according to a control signal. The LNA low-noise-amplifies a signal received from the RF switch.
Owner:SAMSUNG ELECTRONICS CO LTD

Magnetically actuated fast MEMS mirrors and microscanners

Magnetically and electromagnetically driven MEMS devices for reflecting light signals and for switching radio frequency (RF) signals are provided. In a preferred embodiment, a light reflecting device such as a mirror or micro-scanner comprises a plate operative to reflect light and at least two conductive flexural actuators connected to the plate and to a substrate and operative to impart a rotation or tilt motion to the plate under a force arising from the interaction of a current passing through the conductive flexural actuators and a magnetic field parallel to the substrate. An RF switch comprises a substrate and a membrane having a longitudinal dimension and a lateral dimension, the membrane positioned substantially parallel to and attached to the substrate and operative to provide at least two switching positions in response to actuation by a Lorenz force acting on it.
Owner:TERRAOP

Semiconductor radio frequency switch with body contact

The present disclosure relates to a radio frequency (RF) switch that includes multiple body-contacted field effect transistor (FET) elements coupled in series. The FET elements may be formed using a thin-film semiconductor device layer, which is part of a thin-film semiconductor die. Conduction paths between the FET elements through the thin-film semiconductor device layer and through a substrate of the thin-film semiconductor die may be substantially eliminated by using insulating materials. Elimination of the conduction paths allows an RF signal across the RF switch to be divided across the series coupled FET elements, such that each FET element is subjected to only a portion of the RF signal. Further, each FET element is body-contacted and may receive reverse body biasing when the RF switch is in an OFF state, thereby reducing an OFF state drain-to-source capacitance of each FET element.
Owner:QORVO US INC

Adaptive impedance matching apparatus,system and method with improved dynamic range

An embodiment of the present invention provides an apparatus, comprising an RF matching network connected to at least one RF input port and at least one RF output port and including one or more voltage or current controlled variable reactive elements; a voltage detector connected to the at least one RF output port via a variable voltage divider to determine the voltage at the at least one RF output port and provide voltage information to a controller that controls a bias driving circuit which provides voltage or current bias to the RF matching network; a variable voltage divider connected to the voltage detector and implemented using a multi-pole RF switch to select one of a plurality of different resistance ratios to improve the dynamic range of the apparatus; and wherein the RF matching network is adapted to maximize RF power transferred from the at least one RF input port to the at least one RF output port by varying the voltage or current to the voltage or current controlled variable reactive elements to maximize the RF voltage at the at least one RF output port.
Owner:NXP USA INC

Circuit board having a pereipheral antenna apparatus with selectable antenna elements and selectable phase shifting

A circuit board for wireless communications includes communication circuitry for modulating and / or demodulating a radio frequency (RF) signal and an antenna apparatus for transmitting and receiving the RF signal, the antenna apparatus having selectable antenna elements located near one or more peripheries of the circuit board and selectable phase shifting. A switching network couples one or more of the selectable elements to the communication circuitry and provides impedance matching regardless of which or how many of the antenna elements are selected, and includes a selectable phase shifter to allow the phase of the antenna elements to be shifted by 180 degrees. The phase shifter includes a first RF switch and two ¼-wavelength delay lines of PCB traces or delay elements and a second RF switch. The phase shifter selectively provides a straight-through path, a 180 degree phase shift, a high impedance state, or a notch filter.
Owner:ARRIS ENTERPRISES LLC

Repeater rise-over-thermal (ROT) value calibration

An RF switch is used in the signal path to an amplifier, for example between a receiving antenna and an amplifier. The switch is used to alternately connect the amplifier between a normal signal source for the amplifier and a fixed load for calibration. The power difference between the two switch states at the output of the amplifier would then yield a calibrated measurement of a signal value, such as rise over thermal (RoT). The amount of time spent in the calibration position is maintained at a minimized level so as to reduce impact on the normal operation of the amplifier. The invention provides an ability to estimate traffic load in a repeater system based on RoT measurements of repeater reverse-link output power by determining a reverse link gain.
Owner:QUALCOMM INC

Unpowered switch and bleeder circuit

A novel RF switch for switching radio frequency (RF) signals is disclosed. The RF switch may comprise both enhancement and depletion mode field-effect transistors (E-FETs and D-FETs) implemented as a monolithic integrated circuit (IC) on a silicon-on-insulator (SOI) substrate. The disclosed RF switch, with a novel bleeder circuit, may be used in RF applications wherein a selected switch state and performance are required when the switch and bleeder circuits are not provided with operating power (i.e., when the switch and bleeder circuits are “unpowered”).
Owner:PSEMI CORP

System and Method for a Driving a Radio Frequency Switch

In accordance with an embodiment, a radio frequency (RF) switching circuit includes a plurality of series connected RF switch cells comprising a load path and a control node, a plurality of first gate resistors coupled between control nodes of adjacent RF switch cells, and an input resistor having a first end coupled to a control node of one of the plurality of RF switch cells and a second end configured to an output of a switch driver. Each of the plurality of series connected RF switch cells includes a switch transistor.
Owner:INFINEON TECH AG

Beamformer configurable for connecting a variable number of antennas and radio circuits

A reconfigurable RF routing module may include M RF inputs and N RF outputs, wherein M is greater than N; a plurality of RF switches arranged to select between incoming RF signals; a plurality of RF combiners arranged to combine RF signals to a single RF signal; and a plurality of RF couplers, each associated with a transfer switch and a specified attenuation, wherein the specified attenuation of each one of the plurality of RF couplers is selected so that the RF inputs of each one of the plurality of the RF combiners are combined in a balanced manner, wherein the switches, the combiners, and the RF couplers are configured to route any of 1 to M of the inputs into each of the N outputs.
Owner:MAGNOLIA BROADLAND INC

Discrete spurious leakage cancellation for use in a cable modem

A novel apparatus for and method of discrete spurious frequency leakage cancellation for use in a cable modem. The spurious leakage cancellation mechanism is particularly suitable for use in cable modem systems adapted to implement the DOCSIS 2.0 specification which specifies both downstream and upstream channels. In one embodiment, the spurious emission cancellation mechanism cancels the spurious emissions by first creating a replica of the aggressor clock signal having the same amplitude but 180 degree phase shift as the spurious signal. The phase shifted spurious replica is added to the original spurious signal thus cancelling the spurious signal. In another embodiment, an RF switch is used to couple the upstream path signal to the CATV cable only during transmission bursts. In between transmission bursts, the upstream signal is disconnected from the CATV cable. This embodiment takes advantage of the less stringent spurious requirements in the DOCSIS 2.0 specification for transmission bursts. In between transmission bursts, when stricter spurious requirements apply, the upstream signal is disconnected from the CATV cable.
Owner:TEXAS INSTR INC

Switch assembly with integrated tuning capability

A multiport RF switch assembly with integrated impedance tuning capability is described that provides a single RFIC solution to switch between transmit and receive paths in a communication system. Dynamic tuning is integrated into each switch sub-assembly to provide the capability to impedance match antennas or other components connected to the multiport switch. The tuning function at the switch can be used to shape the antenna response to provide better filtering at the switch / RF front-end (RFFE) interface to allow for reduced filtering requirements in the RFFE. Memory is designed into the multiport switch assembly, allowing for a look-up table or other data to reside with the switch and tuning circuit. The resident memory will result in easier integration of the tunable switch assembly into communication systems.
Owner:KYOCERA AVX COMPONENTS (SAN DIEGO) INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products