Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

177 results about "First principle" patented technology

A first principle is a basic proposition or assumption that cannot be deduced from any other proposition or assumption. In philosophy, first principles are from First Cause attitudes and taught by Aristotelians, and nuanced versions of first principles are referred to as postulates by Kantians. In mathematics, first principles are referred to as axioms or postulates. In physics and other sciences, theoretical work is said to be from first principles, or ab initio, if it starts directly at the level of established science and does not make assumptions such as empirical model and parameter fitting.

Multi-scale multiphysics coupling simulation method of metal additive manufacturing

The invention provides a multi-scale multiphysics coupling simulation method of metal additive manufacturing. The method comprises the following steps: S1, establishing a metal additive manufacturing technology data model; S2, carrying out first-principles calculation by calculation software on a microscale through first principles to acquire micro physical properties of additive metal material; S3, establishing an NxNxN super-cell model of the additive metal material, and carrying out molecular dynamics simulation calculation through molecular dynamics simulation software; S4, studying plasma, which is generated in a melting process of metal powder heated by an electron beam or a laser, on a mesoscale; S5, utilizing a flow-heat-solid-magnet multiphysics coupling simulation platform for simulation calculation; and S6, establishing a technology parameter feedback control model for different types and distribution situations of defects, and optimizing metal additive manufacturing technology parameters. The method forms a macro-micro-integration metal additive manufacturing product quality prediction system by means of multi-scale multiphysics coupling simulation.
Owner:湖南珞佳智能科技有限公司

Computer System And Method For Causality Analysis Using Hybrid First-Principles And Inferential Model

The present invention is directed to computer-based methods and system to perform root-cause analysis on an industrial process. The methods and system load process data for an industrial process from a historian database and build a hybrid first-principles and inferential model. The methods and system then executes the hybrid model to generate KPIs for the industrial process using the loaded process variables. The methods and system then selects a subset of the KPIs to represent an event occurring in the industrial process, and divides the data for the subset into multiple subset of time series. The system and methods select time intervals from the time series based on the data variability in the selected time intervals and perform a cross-correlation between the loaded process variables and the selected time interval, resulting in a cross-correlation score for each loaded process variable. The methods and system then select precursor candidates from the loaded process variables based on the cross-correlation scores and execute a parametric model for performing quantitative analysis of the selected precursor candidates, resulting in a strength of correlation score for each precursor candidate. The methods and system select root-cause variables from the selected precursor candidates based on the strength of correlation scores for analyzing the root-cause of the event.
Owner:ASPENTECH CORP

Method and apparatus to measure particle mobility in solution

ActiveUS20110210002A1Reduce harmMinimizing electrochemical degradationSludge treatmentVolume/mass flow measurementPhotodetectorFree solution
A method and apparatus is disclosed for measurement of the electrophoretic mobility of particles and molecules in solution. A sample of particles is placed in a cell containing two electrodes that apply an alternating electric field. A monochromatic light beam passes through the sample. Light scattered by the particles, along with the unscattered beam, is collected and collimated as it exits the cell. This beam is combined in free space with a phase modulated reference beam. The interference forms a frequency modulated speckle pattern, which is detected by a photodetector array. Each array element collects a narrow range of well-defined scattering angles. The signal from each is demodulated to extract the optical phase information providing a first-principle measurement of the electrophoretic mobility of the scattering particles. Each detector element provides a simultaneous independent measurement. This inherent parallelism drastically increases the amount of information available in a given time. The resulting increased sensitivity extends the mobility measurement to particles below one nanometer, reduces the required concentration and electric field compared to previous methods. This minimizes damage to fragile samples, increases the electrode useful life, and reduces joule heating. Electrophoretic mobility is a critically important parameter for predicting the stability of nanoparticle suspensions and pharmaceutical formulations such as protein therapeutics. This invention enables reliable free-solution phase measurement of these samples.
Owner:WYATT TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products