Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

243results about How to "Enhanced Situational Awareness" patented technology

Method and apparatus to determine vehicle intent

The present invention relates to the field of smart cars and automatic signaling of a vehicle's intent. The invention allows a driver to choose between manual or automatic signaling (turns, deceleration, acceleration) and a prominent feature is that the system is not cooperative and can be phased in over time, one car at a time and offer immediate benefits. Much of the prior art relating to newer automotive technologies relies on the use of cooperative technologies, such as transponders or beacons and the like, requiring all cars to equip in order to gain benefits. While this is technically achievable it is an institutional limitation, and therefore systems that do not rely on this extent of cooperation are more practical and can be introduced sooner. The invention has the capability of ensuring that many more cars on the road provide proper turn signals as well as acceleration and deceleration signals. This display of intent will lead to increased situational awareness for all drivers and will improve efficiencies on the roads leading to less congestion. Today, the car ahead may simply slow down leaving a following or approaching driver to wait and guess what is happening. With this invention the car ahead will declare its intentions in advance. The invention also allows for the broadcasting of the vehicles intentions over commercially available data links.
Owner:SMITH ALEXANDER E

Dynamic wake prediction and visualization with uncertainty analysis

A dynamic wake avoidance system utilizes aircraft and atmospheric parameters readily available in flight to model and predict airborne wake vortices in real time. A novel combination of algorithms allows for a relatively simple yet robust wake model to be constructed based on information extracted from a broadcast. The system predicts the location and movement of the wake based on the nominal wake model and correspondingly performs an uncertainty analysis on the wake model to determine a wake hazard zone (no fly zone), which comprises a plurality of “wake planes,” each moving independently from another. The system selectively adjusts dimensions of each wake plane to minimize spatial and temporal uncertainty, thereby ensuring that the actual wake is within the wake hazard zone. The predicted wake hazard zone is communicated in real time directly to a user via a realistic visual representation. In an example, the wake hazard zone is visualized on a 3-D flight deck display to enable a pilot to visualize or “see” a neighboring aircraft as well as its wake. The system substantially enhances the pilot's situational awareness and allows for a further safe decrease in spacing, which could alleviate airport and airspace congestion.
Owner:NAT AERONAUTICS & SPACE ADMINISTATION THE UNITED STATES GOVERNMENT AS REPRESENTED BY THE ADMINISTATION OF THE THE

Method for planning and executing obstacle-free paths for rotating excavation machinery

This invention concerns the control of rotating excavation machinery, for instance to avoid collisions with obstacles. In a first aspect the invention is a control system for autonomous path planning in excavation machinery, comprising: A map generation subsystem to receive data from an array of disparate and complementary sensors to generate a 3-Dimensional digital terrain and obstacle map referenced to a coordinate frame related to the machine's geometry, during normal operation of the machine. An obstacle detection subsystem to find and identify obstacles in the digital terrain and obstacle map, and then to refine the map by identifying exclusion zones that are within reach of the machine during operation. A collision detection subsystem that uses knowledge of the machine's position and movements, as well as the digital terrain and obstacle map, to identify and predict possible collisions with itself or other obstacles, and then uses a forward motion planner to predict collisions in a planned path. And, a path planning subsystem that uses information from the other subsystems to vary planned paths to avoid obstacles and collisions. In other aspects the invention is excavation machinery including the control system; a method for control of excavation machinery; and firmware and software versions of the control system.
Owner:COMMONWEALTH SCI & IND RES ORG

Employing local, opportunistic automatic dependent surveillance-broadcast (ADS-B) information processed by an unmanned aerial vehicle ground control station to augment other source “knowledge” of local aircraft position information for improving situational awareness

A system and method are provided for employing local, opportunistic Automatic Dependent Surveillance-Broadcast (ADS-B) information to augment other source “knowledge” of local aircraft position information for improving situational awareness in areas lacking ADS-B coverage provided by other aircraft control agencies including the Federal Aviation Administration (FAA), other Civil Aviation Authorities (CAAs), and/or other Air Traffic Control (ATC) entities. Locally-received, e.g., in a vicinity of a UAV or sUAS, ADS-B positional information is received by a UAV, sUAS or associated ground control station and integrated on a display component of the ground control station, e.g., a pilot display, for the UAV or sUAS. Received positional information is forwarded to other interested users/systems, including those associated with agencies or entities in overall tactical, operational or surveillance control of a particular area of operations, as appropriate as an integrated situational awareness map display picture.
Owner:ROCKWELL COLLINS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products