Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

146 results about "Bone Marrow Stromal Cell" patented technology

Bone marrow is a semi-solid tissue which may be found within the spongy or cancellous portions of bones. In birds and mammals, bone marrow is the primary site of new blood cell production or hematopoiesis. It is composed of hematopoietic cells, marrow adipose tissue, and supportive stromal cells.

Methods for the culture of human embryonic stem cells on human feeder cells

Methods and cell culture medium for the generation of human pluripotent embryonic stem cells are disclosed. Human embryonic stem cells are cultured with human granulosa feeder cells, muscle cells, Fallopian ductal epithelial cells, bone marrow stromal cells, and skin fibroblasts and the embryonic stem cells maintain their pluripotent phenotype. The human pluripotent embryonic stem cells can be cultured without feeder cells, and in the presence of supplemental growth factors. The human pluripotent embryonic stem cells can be alternatively cultured with conditioned medium obtained from a cell culture capable of maintaining human embryonic stem cells in a pluripotent state, wherein the cell culture is a human granulosa cell culture.
Owner:VIACYTE INC

Alternative compositions and methods for the culture of stem cells

Methods and cell culture medium for the generation of human pluripotent embryonic stem cells are disclosed. Human embryonic stem cells are cultured with human granulosa feeder cells, muscle cells, Fallopian ductal epithelial cells, bone marrow stromal cells, and skin fibroblasts and the embryonic stem cells maintain their pluripotent phenotype. The human pluripotent embryonic stem cells can be cultured without feeder cells, and in the presence of supplemental growth factors. The human pluripotent embryonic stem cells can be alternatively cultured with conditioned medium obtained from a cell culture capable of maintaining human embryonic stem cells in a pluripotent state, wherein the cell culture is a human granulosa cell culture.
Owner:VIACYTE INC

Bone marrow cells as a source of neurons for brain and spinal cord repair

Bone marrow stromal cells (BMSC) differentiate into neuron-like phenotypes in vitro and in vivo, engrafted into normal or denervated rat striatum. The BMSC did not remain localized to the site of the graft, but migrated throughout the brain and integrated into specific brain regions in various architectonic patterns. The most orderly integration of BMSC was in the laminar distribution of cerebellar Purkinje cells, where the BMSC-derived cells took on the Purkinje phenotype. The BMSC exhibited site-dependent differentiation and expressed several neuronal markers including neuron-specific nuclear protein, tyrosine hydroxylase and calbindin. BMSC can be used to target specific brain nuclei in strategies of neural repair and gene therapy.
Owner:SOUTH FLORIDA UNIVESITY OF

Differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of notch gene

There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and / or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and / or Notch signaling related gene have been introduced. The invention also provides a method of inducing further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.
Owner:SANBIO

Method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of notch gene

There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and / or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and / or Notch signaling related gene have been introduced. The invention also provides a method of inducing further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.
Owner:SANBIO

Methods and devices for tissue repair

Methods for treating diseased or damaged tissue in a subject are disclosed, involving administering to said subject at a site wherein diseased or damaged tissue occurs, cells of a type(s) normally found in healthy tissue corresponding to the diseased or damaged tissue, and / or suitable progenitor cells thereof, in association with bioresorbable beads or particles and optionally a gel and / or gel-forming substance. Where the cells an / or suitable progenitor cells thereof are chondrocytes, embryonic stem cells and / or bone marrow stromal cells, the methods of the invention are suitable for treating, for example, articular cartilage degeneration associated with primary osteoarthritis. Also disclosed is a device having tissue-like characteristics for treating diseased or damaged tissue in a subject, wherein the device comprises cells of a type(s) normally found in healthy tissue corresponding to the diseased or damaged tissue, and / or suitable progenitor cells thereof, in association with bioresorbable beads or particles and optionally a gel and / or gel-forming substance.
Owner:COMMONWEALTH SCI & IND RES ORG +1

Non-lethal methods for conditioning a recipient for bone marrow transplantation

The present invention relates to non-lethal methods of conditioning a recipient for bone marrow transplantation. In particular, it relates to the use of nonlethal doses of total body irradiation, total lymphoid irradiation, cell type-specific or cell marker-specific antibodies, especially antibodies directed to bone marrow stromal cell markers, NK cells, or the CD8 cell marker, cytotoxic drugs, or a combination thereof. The methods of the invention have a wide range of applications, including, but not limited to, the conditioning of an individual for hematopoietic reconstitution by bone marrow transplantation for the treatment of hematologic malignancies, hematologic disorders, autoimmunity, infectious diseases such as acquired immunodeficiency syndrome, and the engraftment of bone marrow cells to induce tolerance for solid organ, tissue and cellular transplantation.
Owner:PITTSBURGH UNIV OF

Schwann cells originating in myeloid interstitial cells

There is provided a method of inducing bone marrow stromal cells to differentiate into bone marrow stromal cell-derived Schwann cells in vitro, comprising the steps of: collecting bone marrow stromal cells from bone marrow and culturing the cells in a standard essential culture medium supplemented with a serum; adding a reducing agent to the culture medium and further culturing the cells; adding a differentiation inducing agent to the culture medium and further culturing the cells; and adding a cyclic AMP-augmenting agent or a cyclic AMP analogue and / or a glial cell differentiation and survival stimulating factor to the culture medium, and further culturing the cells to obtain the bone marrow stromal cell-derived Schwann cells. There are also provided bone marrow stromal cell-derived Schwann cells obtained thereby and a pharmaceutical composition for neural regeneration that comprises them.
Owner:SANBIO

Osteogenic and anti-adipogenic oxysterols

The present invention discloses osteogenic and anti-adipogenic oxysterols. Agents and methods for protecting, blocking or rescuing marrow stromal cells from the inhibitory effects of oxidative stress on their osteoblastic cellular differentiation are disclosed. Exemplary agents include oxysterols alone or in synergistic combinations, as well as hedgehog or Wnt signaling activators. The synergistic effects of oxysterols and bone morphogenic proteins are also disclosed.
Owner:RGT UNIV OF CALIFORNIA

Agents and Methods for Osteogenic Oxysterols Inhibition of Oxidative Stress on Osteogenic Cellular Differentiation

The present invention discloses oxygenic oxygenic oxysterols. Also disclosed, agents and methods for protecting, blocking or rescuing marrow stromal cells from the inhibitory effects of oxidative stress on their osteoblastic cellular differentiation. Exemplary agents include oxysterols, rhBMP2, alone or in combination which are demonstrated to specifically combat oxidative stress caused by inflammatory oxidized lipids, such as xanthine / xanthine oxidase and minimally oxidized LDL. The synergistic effects of oxysterols and bone morphogenic proteins are disclosed.
Owner:RGT UNIV OF CALIFORNIA

Method and apparatus for preparing and culturing cells

A method and an apparatus for preparing and culturing cells, particularly bone marrow stromal cells. The method includes the steps of placing an oxygenator and a scaffold in a container, such as a syringe, withdrawing bone marrow stromal cells with the syringe, evenly distributing the cells on the scaffold, connecting the syringe with a reservoir with a medium to enrich the syringe with the medium, and promoting the medium level movement in the syringe to culture bone marrow stromal cells.
Owner:IND TECH RES INST

Transplantation of bone marrow stromal cells for treatment of neurodegenerative diseases

ActiveUS20060275272A1Prevents axonal fiber lossPrevents and reduces demyelinationBiocideNervous disorderBone Marrow Stromal CellDemyelinating disease
The present invention relates to a treatment of an autoimmune demyelinating disease / disorder. Also included in the present invention is the use of bone marrow stromal cells for the treatment of multiple sclerosis (MS).
Owner:HENRY FORD HEALTH SYST

Non-lethal methods for conditioning a recipient for bone marrow transplantation

InactiveUS20030165475A1Diminished proliferative and cytotoxic activityDosage of TBI can be further reducedBiocideEnergy modified materialsAcquired immunodeficiencyGackstroemia
The present invention relates to non-lethal methods of conditioning a recipient for bone marrow transplantation. In particular, it relates to the use of nonlethal doses of total body irradiation, total lymphoid irradiation, cell type-specific or cell marker-specific antibodies, especially antibodies directed to bone marrow stromal cell markers or the CD8 cell marker, cytotoxic drugs, or a combination thereof. The methods of the invention have a wide range of applications, including, but not limited to, the conditioning of an individual for hematopoietic reconstitution by bone marrow transplantation for the treatment of hematologic malignancies, hematologic disorders, autoimmunity, infectious diseases such as acquired immunodeficiency syndrome, and the engraftment of bone marrow cells to induce tolerance for solid organ, tissue and cellular transplantation.
Owner:ILDSTAD SUZANNE T

Cartilage tissue engineering repair bracket and preparation method thereof

The invention discloses a cartilage tissue engineering repair bracket and a preparation method thereof, and belongs to the cartilage tissue repair field. The bracket comprises natural high polymer water-gel and decalcified bone matrix which is coupled with affinitive peptides of mesenchymal stem cells on surface; the affinitive peptides of the mesenchymal stem cells are coupled on the surface of the decalcified bone matrix to obtain the cartilage tissue engineering repair bracket with special mesenchymal stem cell affinity. By being placed in a cartilage defective region, the cartilage tissue engineering repair bracket can collect a plurality of BMSC (bone marrow stromal cells); and in the bracket, under mating effect of the natural high polymer water-gel and the decalcified bone matrix, the BMSC can be retained in the cartilage defective region for a long time, so that the cartilage repair has a longer curative effect period. The invention further discloses a preparation method of the bracket, wherein the natural high polymer water-gel aqueous liquor is injected in the decalcified bone matrix which is coupled with affinitive peptides of mesenchymal stem cells on surface to carry out gelation reaction to obtain the bracket with higher mechanical strength and inducibility. The method is simple and high in practicability.
Owner:PEKING UNIV THIRD HOSPITAL

Isolation of multi-lineage stem cells

The present application discloses a method of manipulating a biological sample of cells, which includes multi-lineage stem cells, progenitor cells, other marrow stromal cells: allowing the sample of cells to settle in a container; transferring supernatant from the container to another container; and isolating cells from the supernatant, which has comparatively lower density in the sample.
Owner:SCM LIFESCI CO LTD

Porous tantalum rod and application of porous tantalum rod

The invention relates to a medical permanent implantation object, in particular to a medical implantation porous tantalum rod used for treating early-mid femoral head necrosis. The porous tantalum rod comprises a body, wherein one end of the body is provided with a groove, the other end of the body is provided with a threaded structure, and a notch is formed in the end surface of the tail end of the threaded structure. One end of the body of the porous tantalum rod is provided with the notch, bone marrow stromal cells or bone marrow stromal cell united biological membrane complexes and the like can be loaded, the generation of a new bone is favorably realized, a better clinical effect is particularly realized in the early femoral head necrosis treatment, and the defects of poor clinical treatment effect and the like of the existing entity type porous tantalum rod are overcome. The porous tantalum rod has the advantages that the preparation method is simple, the cost is low, the implementation and the clinical application are favorably realized, and the porous tantalum rod is suitable for the need of wide patients.
Owner:赵德伟

Isolation and expansion of human marrow stromal cells

The invention includes in vitro methods of inducing and enhancing proliferation of human marrow stromal cells for use in, for example, gene therapy and transplantation methods. The invention also includes a method of assessing the expandability (i.e., proliferative capacity) of human marrow stromal cells. In addition, the invention includes a conditioned medium for enhancing proliferation of human marrow stromal cells.
Owner:PHILADELPHIA HEALTH & EDUCATION CORP

Injectable bone regeneration gel containing bone formation enhancing peptide

The present invention relates to an injectable bone regeneration material containing a bone formation enhancing peptide, and more particularly, to an injectable bone regeneration material, in which a bone formation enhancing peptide essentially containing one and more amino acid sequences among SEQ ID NO: 1 to SEQ ID NO: 28 is bonded or mixed to a gel-forming base material selected from the group consisting of chitosan, alginic acid, silk fibroin, propylene glycol, propylene glycol alginic acid, poloxamer, chondroitin sulphate, and the combination thereof. The injectable bone regeneration material according to the present invention can increase differentiation of bone marrow stromal cells and osteoblasts into bone tissue, thus maximizing tissue regeneration by a peptide capable of promoting differentiation of bone tissue and periodontal tissue regeneration. The injectable bone regeneration material is in the form of a gel, and thus can be applied to a surface of various medical devices such as implant etc., and can be mixed with bone graft particles to apply, so that it can increase a treatment effect of existing medical devices to maximize a tissue regeneration effect.
Owner:NANO INTELLIGENT BIOMEDICAL ENG +1

Method for modifying surface of polyetheretherketone by injecting tantalum ion and modified polyetheretherketone material

The invention relates to a method for modifying the surface of polyetheretherketone by injecting tantalum ions and a modified polyetheretherketone material. According to the method, the tantalum element containing modified layer is obtained by injecting the tantalum ions to the surface of the polyetheretherketone by adopting a plasma immersion ion injection technology, the polyetheretherketone approaches the cortical bone of a human body by enhancing the elastic modulus and rigidity of the surface of the polyetheretherketone and the biocompatibility and osseointegration property of the surface of the polyetheretherketone are improved. The polyetheretherketone material obtained through the treatment of the modifying method is enhanced in biocompatibility and mechanical property at different degrees. Besides, a bMSC (Bone Marrow Stromal Cells) cell has an obvious osteogenic differentiation trend on the surface of the polyetheretherketone material obtained through the treatment of the modifying method.
Owner:SHANGHAI INST OF CERAMIC CHEM & TECH CHINESE ACAD OF SCI

Method of reversing carboplatin resistance by inhibition of HGFIN

The present invention discloses the cloning of a new cDNA, HGFIN, from stimulated bone marrow stromal cells that was retrieved with a probe specific for the neurokinin-1 (NK-1) receptor. The novel gene, HGFIN, encodes a protein receptor that is involved in the regulation of hematopoietic proliferation and differentiation. HGFIN is implicated in the treatment of hyperproliferative disorders, particularly bone and breast cancer, because it acts to suppress the proliferating cells.
Owner:RUTGERS THE STATE UNIV

Differentiation of bone marrow cells into neuronal cells and uses therefor

The present invention relates to methods of inducing differentiation of mammalian bone marrow stromal cells into neuronal cells by contacting marrow stromal cells with a neuronal differentiation-inducing compounds. Neuronal differentiation-inducing compounds of the invention include anti-oxidants such as, but not limited to, beta-mercaptoethanol, dimethylsulfoxide, butylated hydroxyanisole, butylated hydroxytoluene, ascorbic acid, dimethylfumarate, and n-acetylcysteine. Once induced to differentiate into neuronal cells, the cells can be used for cell therapy, gene therapy, or both, for treatment of diseases, disorders, or conditions of the central nervous system.
Owner:PHILADELPHIA HEALTH & EDUCATION CORP +1

Cultured stromal cells and uses thereof

The present invention relates to genetically-engineered bone marrow stromal cells and method of preparation thereof for ex vivo delivery of protein and peptides of interest into human or animals. The method includes forming a bone marrow stromal cell expression system in vitro and administering the expression system to a human or animal recipient. The invention relates also to implants colonized by bone marrow stromal cells. In accordance with the invention, the implants comprise a matrix which can be composed of a large variety of biocompatible and biodegradable products, and stromal cells which are integrated into the matrix as such or under genetically-engineered forms. Genetically-engineered bone marrow stromal cells or cell colonized implant are also useful for tissue repair and tissue synthesis, as for angiogenesis.
Owner:CENT FOR TRANSLATIONAL RES & CANCER

Hematopoietic growth factor inducible neurokinin-1 gene and uses thereof

The present invention discloses the cloning of a new cDNA, HGFIN, from stimulated bone marrow stromal cells that was retrieved with a probe specific for the neurokinin-1 (NK-1) receptor. The novel gene, HGFIN, encodes a protein receptor that is involved in the regulation of hematopoietic proliferation and differentiation. HGFIN is implicated in the treatment of hyperproliferative disorders, particularly bone and breast cancer, because it acts to suppress the proliferating cells.
Owner:RUTGERS THE STATE UNIV

Materials from bone marrow stromal cells for use in forming blood vessels and producing angiogenic and trophic factors

A therapeutic for use in inducing angiogenesis and vasculogenesis, the therapeutic including angiogenesis and vasculogenesis inducing factors isolated from stem cells in conjunction with a pharamaceutically acceptable cell therapy. A method of amplifying the production of angiogenesis and vasculogenesis inducing factors secreted by exposing stem cells to and co-culturing the stem cells with a compound for increasing the production of angiogenesis and vasculogenesis inducing factors. Angiogenesis and vasculogenesis inducing factors isolated and purified from stem cells for use in a therapy. A process for obtaining the angiogenesis and vasculogenesis inducing factors as set forth above, the process including the steps of isolating and purifying human mesenchymal stem cells from tissue prior to differentiation and then culture expanding the mesenchymal stem cells to produce a tool for neurological and musculoskeletal therapy. Isolated and culture expanded mesenchymal stem cells under the influence of a requisite compound, that are capable of differentiating and producing a desired cell phenotype needed for tissue repair.
Owner:HENRY FORD HEALTH SYST

Methods and devices for tissue repair

Methods for treating diseased or damaged tissue in a subject are disclosed, involving administering to said subject at a site wherein diseased or damaged tissue occurs, cells of a type(s) normally found in healthy tissue corresponding to the diseased or damaged tissue, and / or suitable progenitor cells thereof, in association with bioresorbable beads or particles and optionally a gel and / or gel-forming substance. Where the cells and / or suitable progenitor cells thereof are chondrocytes, embryonic stem cells and / or bone marrow stromal cells, the methods of the invention are suitable for treating, for example, articular cartilage degeneration associated with primary osteoarthritis. Also disclosed is a device having tissue-like characteristics for treating diseased or damaged tissue in a subject, wherein the device comprises cells of a type(s) normally found in healthy tissue corresponding to the diseased or damaged tissue, and / or suitable progenitor cells thereof, in association with bioresorbable beads or particles and optionally a gel and / or gel-forming substance.
Owner:COMMONWEALTH SCI & IND RES ORG +1

Composition comprising cell and biocompatible polymer

It is an object of the present invention to provide a cell-containing composition capable of suppressing the outflow of the cells after transplantation and improving the survival rate of the cells. The present invention provides a composition which comprises any of bone marrow stromal cell-derived neural precursor cells, bone marrow stromal cell-derived Schwann cells, or bone marrow stromal cell-derived skeletal muscle cells; and a biocompatible polymer.
Owner:FUJIFILM CORP +1

Bioactive ceramic material and preparation method thereof

The invention discloses a bioactive ceramic material with degradability. The chemical formula of the bioactive ceramic material is Ca7Si2P2O16. A preparation method for the bioactive ceramic material comprises the following procedures: A) synthesizing pure Ca7Si2P2O16 powder by using a sol-gel method; and B) adding polyvinyl alcohol into the Ca7Si2P2O16 powder for granulation, dry pressing to obtain a blank, and calcining the blank at high temperature to obtain the Ca7Si2P2O16 bioactive ceramic material. The nagelschmidtite ceramic can support adherence and proliferation of bone marrow stromal cells. Compared with the traditional beta-tricalcium phosphate ceramics, the bioactive ceramic material can better promote osteogenic differentiation of the bone marrow stromal cells and has higher degradability.
Owner:SHANGHAI INST OF CERAMIC CHEM & TECH CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products