Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

232 results about "Neurulation" patented technology

Neurulation refers to the folding process in vertebrate embryos, which includes the transformation of the neural plate into the neural tube. The embryo at this stage is termed the neurula. The process begins when the notochord induces the formation of the central nervous system (CNS) by signaling the ectoderm germ layer above it to form the thick and flat neural plate. The neural plate folds in upon itself to form the neural tube, which will later differentiate into the spinal cord and the brain, eventually forming the central nervous system.

Human cord blood as a source of neural tissue for repair of the brain and spinal cord

InactiveUS20020028510A1Easy to distinguishImprove neurological dysfunctionNervous disorderCell differentiationDiseaseCord blood stem cell
The present invention relates to the use of umbilical cord blood cells from a donor or patient to provide neural cells which may be used in transplantation. The isolated cells according to the present invention may be used to effect autologous and allogeneic transplantation and repair of neural tissue, in particular, tissue of the brain and spinal cord and to treat neurodegenerative diseases of the brain and spinal cord.
Owner:SANERON CCEL THERAPEUTICS +1

Nerve Regeneration Promoting Agent

A neuronal differentiation promoting agent for neural stem cells comprising, as an active ingredient, at least one member selected from the group consisting of ω-3 unsaturated fatty acids and ω-6 unsaturated fatty acids having 18 to 22 carbon atoms, and derivatives thereof. The agent can be used for induction of differentiation of neural stem cells and is useful for treating and / or preventing a variety of neurological diseases, and in the fields of nerve transplantation and / or regenerative medicine for nerves.
Owner:MOCHIDA PHARM CO LTD +1

Bone marrow cells as a source of neurons for brain and spinal cord repair

Bone marrow stromal cells (BMSC) differentiate into neuron-like phenotypes in vitro and in vivo, engrafted into normal or denervated rat striatum. The BMSC did not remain localized to the site of the graft, but migrated throughout the brain and integrated into specific brain regions in various architectonic patterns. The most orderly integration of BMSC was in the laminar distribution of cerebellar Purkinje cells, where the BMSC-derived cells took on the Purkinje phenotype. The BMSC exhibited site-dependent differentiation and expressed several neuronal markers including neuron-specific nuclear protein, tyrosine hydroxylase and calbindin. BMSC can be used to target specific brain nuclei in strategies of neural repair and gene therapy.
Owner:SOUTH FLORIDA UNIVESITY OF

Differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of notch gene

There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and / or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and / or Notch signaling related gene have been introduced. The invention also provides a method of inducing further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.
Owner:SANBIO

Method for differentiating mesenchymal stem cells into neural cells

A method for differentiating mesenchymal stem cells of bone marrow into neural cells comprises culturing the mesenchymal stem cells in a medium containing epidermal growth factor(EGF), basic fibroblast growth factor(bFGF) and hepatocyte growth factor(HGF), and the neural cells produced thereby can be employed for the treatment of a neural disease.
Owner:PHARMICELL +1

Morphogen-induced dendritic growth

InactiveUS6949505B1Alleviate neural pathway damageAlleviate and inhibit immunologically related responseBiocideNervous disorderMammalNeurotrophic factors
Disclosed are methods and compositions for maintaining neural pathways in a mammal including: enhancing survival of neurons at risk of dying; inducing cellular repair of damaged neurons and neural pathways; stimulating neurons to maintain their differentiated phenotype; and promoting dendritic outgrowth, including maintaining dendritic arbors and regenerating dendritic architecture. In one embodiment, the invention provides means for stimulating CAM expression in neurons. The invention also provides means for evaluating the status of nerve tissue, including means for detecting and monitoring neuropathies in a mammal. The methods, devices and compositions include a morphogen or morphogen-stimulating agent provided to the mammal in a therapeutically effective concentration. In another embodiment, the invention provides methods and compositions which include a morphogen or morphogen-stimulating agent, and a nerve trophic factor or nerve trophic factor-stimulating agent at concentrations effective for stimulating dendrite outgrowth. The morphogen and the nerve trophic factor can be admixed in combination.
Owner:MARIEL THERAPEUTICS +1

Multipotent stem cells derived from placenta tissue and cellular therapeutic agents comprising the same

InactiveUS20070243172A1Negative immunological responseBiocideArtificial cell constructsGerm layerDisease
The present invention relates to placenta tissue-derived multipotent stem cells and cell therapeutic agents containing the same. More specifically, to a method for producing placenta stem cells having the following characteristics, the method comprising culturing amnion, chorion, decidua or placenta tissue in a medium containing collagenase and bFGF and collecting the cultured cells: (a) showing a positive immunological response to CD29, CD44, CD73, CD90 and CD105, and showing a negative immunological response to CD31, CD34, CD45 and HLA-DR; (b) showing a positive immunological response to Oct4 and SSEA4; (c) growing attached to plastic, showing a round-shaped or spindle-shaped morphology, and forming spheres in an SFM medium so as to be able to be maintained in an undifferentiated state for a long period of time; and (d) having the ability to differentiate into mesoderm-, endoderm- and ectoderm-derived cells. Also the present invention relates to placenta stem cells obtained using the production method. The inventive multipotent stem cells have the ability to differentiate into muscle cells, vascular endothelial cells, osteogenic cells, nerve cells, satellite cells, fat cells, cartilage-forming cells, osteogenic cells, or insuline-secreting pancreatic β-cells, and thus are effective for the treatment of muscular diseases, osteoporosis, osteoarthritis, nervous diseases, diabetes and the like, and are useful for the formation of breast tissue.
Owner:RNL BIO

Methods of neural conversion of human embryonic stem cells

ActiveUS20120094381A1Reducing DKK- protein functionImprove featuresCulture processNervous system cellsNeural plateDirected differentiation
The present invention relates generally to the field of cell biology of stem cells, more specifically the directed differentiation of pluripotent or multipotent stem cells, including human embryonic stem cells (hESC), somatic stem cells, and induced human pluripotent stem cells (hiPSC) using novel culture conditions. Specifically, methods are provided for obtaining neural tissue, floor plate cells, and placode including induction of neural plate development in hESCs for obtaining midbrain dopamine (DA) neurons, motorneurons, and sensory neurons. Further, neural plate tissue obtained using methods of the present inventions are contemplated for use in co-cultures with other tissues as inducers for shifting differentiation pathways, i.e. patterning.
Owner:MEMORIAL SLOAN KETTERING CANCER CENT

Implanting neural progenitor cells derived for human embryonic stem cells

InactiveUS7011828B2Eliminate inhibitory influenceSolve the shortageBiocideNervous disorderNeural cellIn vivo
The present invention relates to undifferentiated human embryonic stem cells, methods of cultivation and propagation and production of differentiated cells. In particular it relates to the production of human ES cells capable of yielding somatic differentiated cells in vitro, as well as committed progenitor cells such as neural progenitor cells capable of giving rise to mature somatic cells including neural cells and / or glial cells and uses thereof.This invention provides methods that generate in vitro and in vivo models of controlled differentiation of ES cells towards the neural lineage. The model, and cells that are generated along the pathway of neural differentiation may be used for: the study of the cellular and molecular biology of human neural development, discovery of genes, growth factors, and differentiation factors that play a role in neural differentiation and regeneration, drug discovery and the development of screening assays for teratogenic, toxic and neuroprotective effects.
Owner:ES CELL INT +1

Method of inducing and maintaining neuronal cells

The present invention makes available a method for inducing neuronal differentiation and preventing the death or degeneration of neuronal cells both in vitro and in vivo. The subject method stems from the unexpected finding that, contrary to traditional understanding of neural induction, the default fate of ectodermal tissue is neuronal rather than mesodermal and / or epidermal. In particular, it has been discovered that preventing or antagonizing a signaling pathway in a cell for a growth factor of the TGF-β family can result in neuronal differentiation of that cell.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Multipotent stem cells derived from human adipose tissue and cellular therapeutic agents comprising the same

This invention relates to human adipose tissue-derived multipotent adult stem cells. More particularly, the invention relates to human adipose tissue-derived multipotent stem cells, which can be maintained in an undifferentiated state for a long period of time by forming spheres and have high proliferation rates, as well as methods for isolating and maintaining the adult stem cells, and methods for differentiating the multipotent adult stem cells into nerve cells, fat cells, cartilage cells, osteogenic cells and insulin-releasing pancreatic beta-cells. Also, the invention relates to cellular therapeutic agents for treating osteoarthritis, osteoporosis and diabetes and for forming breast tissue, which contain the differentiated cells or the adult stem cells. Although the multipotent stem cells are adult stem cells, they have the ability to differentiate into osteogenic cells, nerve cells, astrocytes, fat cells, chrondrogenic cells or insulin-releasing pancreatic beta-cells, and so are effective in treating osteoporosis, osteoarthritis, nerve disease, diabetes, etc. Also, the stem cells form spheres in a serum-free medium containing CORM-2, and thus can be maintained in an undifferentiated state for a long period of time. Also, the stem cells have very high proliferation rates. Accordingly, the stem cells are useful as cellular therapeutic agents.
Owner:RNL BIO

Peripheral Neural Interface Via Nerve Regeneration to Distal Tissues

At least partial function of a human limb is restored by surgically removing at least a portion of an injured or diseased human limb from a surgical site of an individual and transplanting a selected muscle into the remaining biological body of the individual, followed by contacting the transplanted selected muscle, or an associated nerve, with an electrode, to thereby control a device, such as a prosthetic limb, linked to the electrode. Simulating proprioceptive sensory feedback from a device includes mechanically linking at least one pair of agonist and antagonist muscles, wherein a nerve innervates each muscle, and supporting each pair with a support, whereby contraction of the agonist muscle of each pair will cause extension of the paired antagonist muscle. An electrode is implanted in a muscle of each pair and electrically connected to a motor controller of the device, thereby simulating proprioceptive sensory feedback from the device.
Owner:MASSACHUSETTS INST OF TECH

Combined regulation of neural cell production

This invention relates to a method of selectively producing neural cells, including neurons or glial cells, in vitro or in vivo. Also provided are methods of treating or ameliorating neurodegenerative disease or medical conditions by producing neural cells. Thus, a combination of factors is used to achieve two steps: increasing the number of neural stem cells and instructing the neural stem cells to selectively become neurons or glial cells.
Owner:STEM CELL THERAPEUTICS

Oligodendrocytes derived from human embryonic stem cells for remyelination and treatment of spinal cord injury

ActiveUS7285415B2Enhances late-stage differentiationEfficient productionBiocideSenses disorderNeural cellRemyelination
This invention provides populations of neural cells bearing markers of glial cells, such as oligodendrocytes and their precursors. The populations are generated by differentiating pluripotent stem cells such as human embryonic stem cells under conditions that promote enrichment of cells with the desired phenotype or functional capability. Various combinations of differentiation factors and mitogens can be used to produce cell populations that are over 95% homogeneous in morphological appearance, and the expression of oligodendrocyte markers such as GalC. The cells are capable of forming myelin sheaths, and can be used therapeutically improve function of the central nervous system.
Owner:RGT UNIV OF CALIFORNIA

Use of Epineural Sheath Grafts for Neural Regeneration and Protection

Described herein is conduit material that causes minimal inflammatory reaction, and serves as a structural guide for regenerating nerve tissue (e.g., axons). Thus, the invention is directed to methods of treating a nerve injury in an individual in need thereof. The methods employ an isolated, naturally occurring epineural sheath, and can be used, for example, to regenerate nerve tissue in an individual in need thereof. Also provided herein is a device for harvesting an epineural sheath.
Owner:THE CLEVELAND CLINIC FOUND

Cortical interneurons and other neuronal cells produced by the directed differentiation of pluripotent and multipotent cells

Provided are cortical interneurons and other neuronal cells and in vitro methods for producing such cortical interneurons and other neuronal cells by the directed differentiation of stem cells and neuronal progenitor cells. The present disclosure relates to novel methods of in vitro differentiation of stem cells and neural progenitor cells to produce several type neuronal cells and their precursor cells, including cortical interneurons, hypothalamic neurons and pre-optic cholinergic neurons. The present disclose describes the derivation of these cells via inhibiting SMAD and Wnt signaling pathways and activating SHH signaling pathway. The present disclosure relates to the novel discovery that the timing and duration of SHH activation can be harnessed to direct controlled differentiation of neural progenitor cells into either cortical interneurons, hypothalamic neurons or pre-optic cholinergic neurons. The present disclosure also relates to compositions of cortical interneurons, hypothalamic neurons or pre-optic cholinergic neurons, and their precursors, that are highly enriched and can be used in variety of application. These cells can be used therapeutically to treat neurodegenerative and neuropsychiatric disorders, and can be used for disease modeling and drug screening.
Owner:MEMORIAL SLOAN KETTERING CANCER CENT +1

Methods for inducing differentiation of embryonic stem cells and uses thereof

The present invention provides a method for inducing differentiation of an embryonic stem cell into a differentiated neural cell. The present invention further provides a method for producing differentiated neural cells, and a population of cells comprising the differentiated neural cells. Additionally, the present invention provides a method for repopulating a spinal cord in a subject, and a method for treating nervous tissue degeneration in a subject in need of treatment. The present invention further provides neural progenitor cells, differentiated neural cells, and uses of same. Also provided is a transgenic non-human animal containing the differentiated neural cells. The present invention is further directed to a method for isolating a population of differentiated neural cells. Finally, the present invention provides a method for identifying an agent for use in treating a condition associated with neuron degeneration.
Owner:THE TRUSTEES OF COLUMBIA UNIV IN THE CITY OF NEW YORK

Culture method to obtain and maintain a pure or enriched population of mammalian neural stem cells and/or neural/progenitor cells that are prone to differentiate into oligodendrocyte-lineage cells in vitro

An isolated expandable human neural stem or progenitor cell wherein the cell is a progenitor cells or stem cell, maintains its capability to differentiate into neurons, astrocytes, and oligodendrocytes, maintains its ability to differentiate into oligodendrocyte lineage cells efficiently throughout subsequent passages, and the cell expresses at least cell surface antigens CD133 and CD140α. Also provided is a method of in vitro culturing an expandable neural progenitor or stem cell isolated from a mammalian central nervous system, and the culture itself, wherein said cell maintains its capability to differentiate into neurons, astrocytes, and oligodendrocytes and its ability to differentiate into oligodendrocyte-lineage cells efficiently. In addition, a method of treating a condition caused by a loss of myelin or a loss of oligodendrocytes is provided as is a composition comprising an isolated expandable neural stem cell or one cultured by the methods of the invention.
Owner:KIDO TSUNEO

Derivation of terminally differentiated dopaminergic neurons from human embryonic stem cells

The present disclosure is directed to improved methods for efficiently producing neuroprogenitor cells and differentiated neural cells such as dopaminergic neurons and serotonergic neurons from pluripotent stem cells, for example human embryonic stem cells. Using the disclosed methods, cell populations containing a high proportion of cells positive for tyrosine hydroxylase, a specific marker for dopaminergic neurons, have been isolated. The neuroprogenitor cells and terminally differentiated cells of the present disclosure can be generated in large quantities, and therefore may serve as an excellent source for cell replacement therapy in neurological disorders such as Parkinson's disease.
Owner:RELIANCE LIFE SCI PVT

Isolated mammalian neural stem cells, methods of making such cells

Using a novel culture approach, previously unknown populations of neural progenitor cells have been found within an adult mammalian brain. By limiting cell-cell contact, dissociated adult brain yields at least two types of cell aggregates. These aggregates or clones of stem / precursor cells can be generated from adult brain tissue with significantly long postmortem intervals. Both neurons and glia arise from stem / precursor cells of these cultures, and the cells can survive transplantation to the adult mammalian brain.
Owner:UNIV OF TENNESSEE RES FOUND

Method for inducing differentiation from human umbilical cord mesenchymai stem cells (hucMSCs) into neural cells

The invention belongs to the field of cell biology and relates to a method for inducing differentiation from human umbilical cord mesenchymai stem cells (hucMSCs) into neural cells. The method comprises that HUCMSCs and Schwann cells are putted in Transwell with apertures of 0.4 microns to be co-cultured separately; a Schwann cell culture medium is utilized as a cell culture medium and half or all of the cell culture medium is replaced every three days; and then neural cells can be obtained after two weeks of culturing. Through a separate co-culturing method utilized by the invention, an umbilical cord can be digested by a mixture of composite collagenase NB4 and hyaluronidase and thus a large amount of HUCMSCs can be separated. High purity HUCMSCs can be obtained in third generation passage cells. In the invention, HUCMSCs are induced and differentiate into neural cells, wherein a cell differentiation rate is over 70%. Expressing rate ranges of specific markers, such as NF-200, nestin, Betar-III-tubulin, etc., of neural cells are from 70 to 80%.
Owner:SHANGHAI FIRST PEOPLES HOSPITAL

Composition comprising mesenchymal stem cells or culture solution of mesenchymal stem cells for the prevention or treatment of neural diseases

ActiveUS20110262393A1Neurocytoxicity caused by amyloid-beta is preventedPhosphorylation of tau protein in neurons is preventedBiocideNervous disorderDiseaseCulture fluid
Provided are a pharmaceutical composition for prevention and treatment of a neural disease including at least one selected from the group consisting of mesenchymal stem cells (MSCs), a culture solution of the MSCs, activin A, PF4, decorin, galectin 3, GDF15, glypican 3, MFRP, ICAM5, IGFBP7, PDGF-AA, SPARCL1, thrombospondin-1, WISP1, progranulin, IL-4, a factor inducing expression thereof, and any combination thereof, and a method therefor.
Owner:MEDIPOST

Method for inducing and culturing umbilical cord mesenchymal stem cells into nerve cells

InactiveCN104004713AHas the function of inducing dischargeShort induction periodNervous system cellsNeurulationElectric discharge
The invention provides a method for inducing and culturing umbilical cord mesenchymal stem cells into nerve cells. According to the invention, a combined method of two steps of pre-induction and induction is adopted, and an optimized pre-induction culture solution and an induction culture solution are prepared. The induction mode is short in induction period and high in cell differentiation homogeneity. Electrophysiological detection finds that the obtained nerve cells have the function of induced electric discharge, which indicates that the induced nerve cells are obtained successfully.
Owner:广州雅安生物科技有限公司

Methods of increasing myotube formation or survival or muscle cell mitogenesis differentiation or survival using neuregulin GGF III

ActiveUS7115554B1Increase in satellite cell activationIncrease in activation of cellNervous disorderPeptide/protein ingredientsMuscle tissueNeurulation
The invention relates to methods of treating diseases and disorders of the muscle tissues in a vertebrate by the administration of compounds which bind the p185erbB2 receptor. These compounds are found to cause increased differentiation and survival of cardiac, skeletal and smooth muscle.
Owner:ACORDA THERAPEUTICS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products