Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

399 results about "Cad system" patented technology

Uterine cervical cancer computer-aided-diagnosis (CAD)

Uterine cervical cancer Computer-Aided-Diagnosis (CAD) according to this invention consists of a core processing system that automatically analyses data acquired from the uterine cervix and provides tissue and patient diagnosis, as well as adequacy of the examination. The data can include, but is not limited to, color still images or video, reflectance and fluorescence multi-spectral or hyper-spectral imagery, coherent optical tomography imagery, and impedance measurements, taken with and without the use of contrast agents like 3-5% acetic acid, Lugol's iodine, or 5-aminolevulinic acid. The core processing system is based on an open, modular, and feature-based architecture, designed for multi-data, multi-sensor, and multi-feature fusion. The core processing system can be embedded in different CAD system realizations. For example: A CAD system for cervical cancer screening could in a very simple version consist of a hand-held device that only acquires one digital RGB image of the uterine cervix after application of 3-5% acetic acid and provides automatically a patient diagnosis. A CAD system used as a colposcopy adjunct could provide all functions that are related to colposcopy and that can be provided by a computer, from automation of the clinical workflow to automated patient diagnosis and treatment recommendation.
Owner:STI MEDICAL SYST

Systems and methods for automated screening and prognosis of cancer from whole-slide biopsy images

InactiveUS20140233826A1Accurate and unambiguous measureReduce dependenceImage enhancementMedical data miningFeature setProstate cancer
The invention provides systems and methods for detection, grading, scoring and tele-screening of cancerous lesions. A complete scheme for automated quantitative analysis and assessment of human and animal tissue images of several types of cancers is presented. Various aspects of the invention are directed to the detection, grading, prediction and staging of prostate cancer on serial sections/slides of prostate core images, or biopsy images. Accordingly, the invention includes a variety of sub-systems, which could be used separately or in conjunction to automatically grade cancerous regions. Each system utilizes a different approach with a different feature set. For instance, in the quantitative analysis, textural-based and morphology-based features may be extracted at image- and (or) object-levels from regions of interest. Additionally, the invention provides sub-systems and methods for accurate detection and mapping of disease in whole slide digitized images by extracting new features through integration of one or more of the above-mentioned classification systems. The invention also addresses the modeling, qualitative analysis and assessment of 3-D histopathology images which assist pathologists in visualization, evaluation and diagnosis of diseased tissue. Moreover, the invention includes systems and methods for the development of a tele-screening system in which the proposed computer-aided diagnosis (CAD) systems. In some embodiments, novel methods for image analysis (including edge detection, color mapping characterization and others) are provided for use prior to feature extraction in the proposed CAD systems.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST

System and method of geospatially mapping topological regions and displaying their attributes

A geographical information system and a method are disclosed for geospatially mapping a least one parcel polygon within a geographical region and for displaying at least one specific attribute of each parcel polygon, i.e. a topological area within the given geographical region, as an attached attribute of latitude and longitude coordinates. The centroid or center point of each of the parcel polygons is determined and stored into conventional computer storage means. The latitude and longitude point feature at the centroid of each parcel polygon is established and similarly stored. A unique tax identification number, e.g. the Assessor Parcel Number (APN) or Parcel Identifier Number (PIN), is assigned to each of the point features. A correlation is then made between the unique tax identification number of the point feature to a text list of at least one attribute, e.g., the physical address of the parcel polygon, of each of the point features. This attribute becomes attached to each point feature. The resulting parcel polygon map and point features with one or more of the attached attributes can then be displayed within a GIS or CAD system to provide the user, for example, accurate locations of street addresses for use in environments that require pinpoint accuracy, such as emergency response.
Owner:GIS DATA RESOURCES

System and method of geospatially mapping topological regions and displaying their attributes

A geographical information system and a method are disclosed for geospatially mapping a least one parcel polygon within a geographical region and for displaying at least one specific attribute of each parcel polygon, i.e. a topological area within the given geographical region, as an attached attribute of latitude and longitude coordinates. The centroid or center point of each of the parcel polygons is determined and stored into conventional computer storage means. The latitude and longitude point feature at the centroid of each parcel polygon is established and similarly stored. A unique tax identification number, e.g. the Assessor Parcel Number (APN) or Parcel Identifier Number (PIN), is assigned to each of the point features. A correlation is then made between the unique tax identification number of the point feature to a text list of at least one attribute, e.g., the physical address of the parcel polygon, of each of the point features. This attribute becomes attached to each point feature. The resulting parcel polygon map and point features with one or more of the attached attributes can then be displayed within a GIS or CAD system to provide the user, for example, accurate locations of street addresses for use in environments that require pinpoint accuracy, such as emergency response.
Owner:GIS DATA RESOURCES
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products