Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

853results about How to "Remove noise" patented technology

Method and apparatus for non-invasive blood constituent monitoring

A system for determining a biologic constituent including hematocrit transcutaneously, noninvasively and continuously. A finger clip assembly includes including at least a pair of emitters and a photodiode in appropriate alignment to enable operation in either a transmissive mode or a reflectance mode. At least one predetermined wavelength of light is passed onto or through body tissues such as a finger, earlobe, or scalp, etc. and attenuation of light at that wavelength is detected. Likewise, the change in blood flow is determined by various techniques including optical, pressure, piezo and strain gage methods. Mathematical manipulation of the detected values compensates for the effects of body tissue and fluid and determines the hematocrit value. If an additional wavelength of light is used which attenuates light substantially differently by oxyhemoglobin and reduced hemoglobin, then the blood oxygen saturation value, independent of hematocrit may be determined. Further, if an additional wavelength of light is used which greatly attenuates light due to bilirubin (440 nm) or glucose (1060 nm), then the bilirubin or glucose value may also be determined. Also how to determine the hematocrit with a two step DC analysis technique is provided. Then a pulse wave is not required, so this method may be utilized in states of low blood pressure or low blood flow.
Owner:HEMA METRICS

System and method for servo control of nonlinear electromagnetic actuators

Servo control using ferromagnetic core material and electrical windings is based on monitoring of winding currents and voltages and inference of magnetic flux, a force indication; and magnetic gap, a position indication. Third order nonlinear servo control is split into nested control loops: a fast nonlinear first-order inner loop causing flux to track a target by varying a voltage output; and a slower almost linear second-order outer loop causing magnetic gap to track a target by controlling the flux target of the inner loop. The inner loop uses efficient switching regulation, preferably based on controlled feedback instabilities, to control voltage output. The outer loop achieves damping and accurate convergence using proportional, time-integral, and time-derivative gain terms. The time-integral feedback may be based on measured and target solenoid drive currents, adjusting the magnetic gap for force balance at the target current. Incorporation of permanent magnet material permits the target current to be zero, achieving levitation with low power, including for a monorail deriving propulsion from the levitation magnets. Linear magnetic approximations lead to the simplest controller, but nonlinear analog computation in the log domain yields a better controller with relatively few parts. When servo-controlled solenoids provide actuation of a pump piston and valves, electronic LC resonance measurements determine liquid volume and gas bubble volume.
Owner:SEALE JOSEPH B +1

Spheno-temporal bone conduction communication equipment and/or hearing aid equipment

InactiveUS20110224481A1Eliminating external noise interferenceImprove ease of useNon-optical adjunctsDeaf-aid setsEngineeringBone conduction hearing
A spheno-temporal bone conduction communication equipment and/or hearing aid includes a system device, a bone skin conduction oscillator and a carrier device for supporting said abovementioned devices. The carrier device has a structural body, and the structural body allows the supported bone skin conduction oscillator in close contact with the spheno-temporal bone. The bone skin conduction oscillator contains a transducer, and the transducer converts an electrical signal into an acoustic oscillating wave and transmits the acoustic oscillating wave into the inner ear via spheno-temporal bone, or receives an acoustic oscillating wave produced by vibration of the skull when speaking and converts it into an electrical signal. The equipment implements bone conduction transmission of the acoustic oscillating wave via spheno-temporal bone, and can be used in bone conduction speaker, bone conduction microphone, bone conduction multimedia device, bone conduction hearing aid device or bone conduction communication device. The equipment can be used with a nasal bone conduction device, can avoid the defect of much external noise when using air conduction mode and overcome shortcomings of the structure easy to slide and inconvenience to add the component when using commonly used bone conduction.
Owner:NEOVICTORY TECH

Method for automatic boundary segmentation of object in 2d and/or 3D image

Segmenting the prostate boundary is essential in determining the dose plan needed for a successful bracytherapy procedure—an effective and commonly used treatment for prostate cancer. However, manual segmentation is time consuming and can introduce inter and intra-operator variability. This present invention describes an algorithm for segmenting the prostate from two dimensional ultrasound (2D US) images, which can be full-automatic, with some assumptions of image acquisition. Segmentation begins with the user assuming the center of the prostate to be at the center of the image for the fully-automatic version. The image is then filtered to identify prostate edge candidates. The next step removes most of the false edges and keeps as many true edges as possible. Then, domain knowledge is used to remove any prostate boundary candidates that are probably false edge pixels. The image is then scanned along radial lines and only the first-detected boundary candidates are kept the final step includes the removal of some remaining false edge pixels by fitting a polynomial to the image points and removing the point with the maximum distance from the fit. The resulting candidate edges form an initial model that is then deformed using the Discrete Dynamic Contour (DDC) model to obtain a closed contour of the prostate boundary.
Owner:THE UNIV OF WESTERN ONTARIO ROBARTS RES INST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products