Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

69results about How to "Optimize performance" patented technology

Database optimization apparatus and method

A database optimizer collects statistics regarding which types of applications are accessing the database, and makes one or more changes to the database schema to optimize performance according to the collected statistics. In a first embodiment, the optimizer detects when a certain type of application accesses the database a percentage of time that exceeds a predefined threshold level, and if the data in the database is stored in a less-than-optimal format for the application, the data type of one or more columns in the database is changed to a more optimal format for the application. This means that the database optimizer must recognize when a different type of application requests data from any changed column, and must potentially perform a conversion from the new data type to the old data type before returning the requested data. In a second embodiment, the optimizer detects when one type of application accesses a column a percentage of time that exceeds a first predefined threshold level and that accesses the column a percentage of time that is less than a second predefined threshold level. In this case, a new column is created in the database so the data is present in both formats, thereby optimizing the performance of both old and new applications that access the data. The database optimizer looks at what type of application requested data, and returns the data in the format optimized for that type of application.
Owner:IBM CORP

Solar Blind Ultraviolet Communication System for Unattended Ground Sensor Network

InactiveUS20070253713A1Reduces acquisition/pointing/tracking requirementOptimize performanceWavelength-division multiplex systemsElectromagnetic transmissionMegabitFree space
Solar blind ultraviolet communication systems can provide short to medium range non line-of-sight and line-of-sight links which are covert and insensitive to meteorological conditions. Operation in the solar blind region provides zero background conditions and strong scattering interactions. Scattering provides the basis for transferring information when non line-of-sight conditions exist. Zero background conditions are a result of strong absorption of solar radiation in the upper atmosphere. These conditions make it possible to operate very sensitive wide field-of-view quantum noise limited photon counting receivers, and provide communication systems that perform very differently than free space optical systems that operate in other spectral regions. These systems may be compact and require very low primary power for operation.
Non line-of-sight ultraviolet communication systems can provide reliable inter-nodal communications for unattended ground sensor networks. This type of system is particularly attractive when non line-of-sight conditions exist between nodes, covert operation is required, and insensitivity to positioning and ground proximity are desired. Light emitting diode technology being developed under the DARPA SUVOS program represents an enabling technology for these systems. Small, low power and low cost systems compatible with unattended ground sensor networks will be available as a result of this program. Data rates of hundreds of kbps with bit error rates (BER) of 10−7 and inter-nodal ranges of hundreds of meters are consistent with phenomenology and technology. Line-of-sight ultraviolet communications systems also offer some unique characteristics for exfiltration of data from an unattended ground sensor network. The absence of background radiation makes it possible to operate with wide field-of-view receivers and large transmitter cone angles. This capability significantly reduces acquisition/pointing/tracking requirements that are traditionally associated with free space optical links. In addition, strong forward aerosol scatter in the ultraviolet reduces dependence on meteorological conditions. The operational range of line-of-sight solar blind communication systems is on the order of kilometers. By selection of operating wavelength within the solar blind region, performance can be optimized to provide reliable communications and at the same time provide covert operation. Data rates on the order of megabits per second are possible with line-of-sight systems.
Owner:BAE SYST INFORMATION & ELECTRONICS SYST INTERGRATION INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products