Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

207results about How to "Enhance performance" patented technology

Cache Memory Having Enhanced Performance and Security Features

A cache memory having enhanced performance and security feature is provided. The cache memory includes a data array storing a plurality of data elements, a tag array storing a plurality of tags corresponding to the plurality of data elements, and an address decoder which permits dynamic memory-to-cache mapping to provide enhanced security of the data elements, as well as enhanced performance. The address decoder receives a context identifier and a plurality of index bits of an address passed to the cache memory, and determines whether a matching value in a line number register exists. The line number registers allow for dynamic memory-to-cache mapping, and their contents can be modified as desired. Methods for accessing and replacing data in a cache memory are also provided, wherein a plurality of index bits and a plurality of tag bits at the cache memory are received. The plurality of index bits are processed to determine whether a matching index exists in the cache memory and the plurality of tag bits are processed to determine whether a matching tag exists in the cache memory, and a data line is retrieved from the cache memory if both a matching tag and a matching index exist in the cache memory. A random line in the cache memory can be replaced with a data line from a main memory, or evicted without replacement, based on the combination of index and tag misses, security contexts and protection bits. User-defined and/or vendor-defined replacement procedures can be utilized to replace data lines in the cache memory.
Owner:CORESECURE TECH LLC

Enhancing cochlear implants with hearing aid signal processing technologies

A system and method that enhance the performance of cochlear implant signal processing in an amplification device. The system utilizes a signal input device that picks up the sounds from the environment or from other hearing or audio devices and feeds the incoming signal into a front-end signal processor, which can be signal processors from hearing aids, hearing protectors or other audio devices. The front-end processor preprocesses the signals and feeds them into a cochlear implant signal processor. The front-end processor may have multiple signal feeding and signal extraction points, other than the two ends, to which connections can be made to feed signals into and extract signals from the front-end processor. The system may also insert a front-end processor into multiple signal processing stages of a cochlear implant signal processor with the front-end processor “sandwiched” between the multiple signal processing stages of the cochlear implant signal processors. The system may also insert a front-end processor into multiple signal processing stages of a cochlear implant signal processor with the front-end processor being either an integrated part of the cochlear implant signal processor or a functionally distinctive part for bilateral cochlear implants.
Owner:CHUNG KING +1

Semiconductor Device and Method of Manufacturing the Same

The present invention discloses a semiconductor device, comprising a substrate, a plurality of gate stack structures on the substrate, a plurality of gate spacer structures on both sides of each gate stack structure, a plurality of source and drain regions in the substrate on both sides of each gate spacer structure, the plurality of gate spacer structures comprising a plurality of first gate stack structures and a plurality of second gate stack structures, wherein each of the first gate stack structures comprises a first gate insulating layer, a first work function metal layer, a second work function metal diffusion blocking layer, and a gate filling layer, the work function is close to the valence band (conduction band) edge; each of the second gate stack structures comprises a second gate insulating layer, a modified first work function metal layer, a second work function metal layer, and a gate filling layer, characterized in that the second work function metal layer comprises implanted work function-regulating doped ions, which are simultaneously diffused to the first work function layer below to regulate the threshold such that the work function of the gate is close to the valence band (conduction band) edge and is opposite the original first work function, to thereby regulate the work function accurately.
Owner:INST OF MICROELECTRONICS CHINESE ACAD OF SCI

Self-condensing pH sensor and catheter apparatus

The present invention is a system for monitoring a patient's breath chemistry comprising a plurality of components, including a self-condensing pH sensor distally mounted on a catheter, a transmitter with hydration sensing circuitry for the pH sensor, and processing receiver/data recorder. A specially designed self-condensing pH sensor is located on the distal end of a tubular catheter which is designed to be inserted into the patient's airway. Monitoring of a patient's breath pH is accomplished by using the miniaturized self-condensing pH sensor, providing for real-time monitoring of patient airway pH values. The self-condensing pH sensor comprises a multi-tubular design with the catheter tubular member housing a silver chloride reference element, an ion conducting path, and an antimony sensor element isolated within an inner tubular member that is co-linearly or coaxially configured with the outer catheter tubular member. A separation means may be employed in close proximity to the pH sensor to keep the pH sensor from direct mucosal contact along the wall of the patient's airway which could possibly affect the sensor's ability to accurately measure breath pH. Centimeter markings imprinted on the catheter body and an optional light source located near the distal tip of the catheter is used to aid in proper positioning. A transmitter with an antenna is engaged to the proximal end of the catheter and transfers the observed pH data by employing one of many wireless methods, such as radio-frequency (RF) energy. Alternately, the transfer of observed pH data is accomplished by direct wire methods. A processing receiver/data recorder receives the data and provides a means for storing and retrieving the data for study by a physician. The transmitter also includes a means to evaluate the signal strength of the sensor, which comprises of periodically sending a low voltage signal to the pH sensor and reviewing the resulting wave forms. The signal strength system can detect if the pH sensor is non-hydrated, partially hydrated, or fully hydrated. The pH data is transferred or updated at specific intervals, which can be varied according to the patient's needs, to the processing receiver/data recorder that can include an alarming means for predetermined pH values.
Owner:SIERRA MEDICAL TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products