Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

969results about "Velocity propogation" patented technology

Monitoring activity of a user in locomotion on foot

In one embodiment, a method includes steps of: (a) identifying an average foot contact time of a user during a first outing; (b) identifying an average pace of the user during the first outing; (c) defining a relationship between foot contact times of the user and corresponding paces of the user, wherein the relationship is based upon the average foot contact time and the average pace identified during the first outing, and wherein no other average foot contact times and no other average paces identified during any different outings by the user are used to define the relationship; and (d) calibrating at least one device that monitors activity of the user in locomotion on foot based upon the defined relationship between foot contact times of the user and corresponding paces of the user. In another embodiment, a method includes steps of: (a) determining a single user-specific calibration constant that defines a relationship between foot contact times of a user and corresponding paces of the user, wherein no other user-specific calibration constants are used to define the relationship; and (b) calibrating at least one device that monitors activity of the user in locomotion on foot based upon the relationship between foot contact times of the user and corresponding paces of the user that is defined by the single user-specific calibration constant.
Owner:NIKE INC +1

Process diagnostics

A diagnostic device for use in a industrial process includes monitoring electronics or diagnostic circuitry configured to diagnose or identify a condition or other occurrence in the industrial process. The system can be implemented in a process device such as a flowmeter, and in one example an acoustic flowmeter. A transducer can also be used and a frequency response, such as resonant frequency, can be observed.
Owner:ROSEMOUNT INC

Method And System For Assessing Quality Of Spot Welds

A system and method for assessing the quality of spot weld joints between pieces of metal includes an ultrasound transducer probing a spot weld joint. The ultrasound transducer transmits ultrasonic radiation into the spot weld joint, receives corresponding echoes, and transforms the echoes into electrical signals. An image reconstructor connected to the ultrasound transducer transforms the electrical signals into numerical data representing an ultrasound image. A neural network connected to the image reconstructor analyzes the numerical data and an output system presents information representing the quality of the spot weld joint. The system is trained to assess the quality of spot weld joints by scanning a spot weld joint with an ultrasound transducer to produce the data set representing the joint; then physically deconstructing the joint to assess the joint quality.
Owner:FCA US

Fluid parameter measurement in pipes using acoustic pressures

At least one parameter of at least one fluid in a pipe is measured using a spatial array of acoustic pressure sensors placed at predetermined axial locations along the pipe 12. The pressure sensors provide acoustic pressure signals, which are provided to a signal processing system that determines the speed of sound amix of the fluid (or mixture) in the pipe 12 using acoustic spatial array signal processing techniques. Numerous spatial array processing techniques may be employed to determine the speed of sound amix. The speed of sound amix is provided to another logic system that calculates the percent composition of the mixture, e.g., water fraction, or any other parameter of the mixture or fluid which is related to the sound speed amix. The signal processing system may also determine the Mach number Mx of the fluid. The acoustic pressure signals measured are lower frequency (and longer wavelength) signals than those used for ultrasonic flow meters, and thus are more tolerant to inhomogeneities in the flow. No external source is required and thus may operate using passive listening. The invention will work with arbitrary sensor spacing and with as few as two sensors if certain information is known about the acoustic properties of the system.
Owner:WEATHERFORD TECH HLDG LLC

Imaging method and device employing sherar waves

An imaging method for observing the propagation of a shear wave simultaneously at a multitude of points in a diffusing viscoelastic medium. The shear wave is caused to be generated by firing at least one focused ultrasound compression wave into the viscoelastic medium by means of an array of transducers, and then emitting at a fast rate and using the same array of transducers, unfocused ultrasound compression waves serving to obtain a succession of images of the medium, and processing the images obtained in this way in deferred time in order to determine the movements of the medium during the propagation of the shear wave.
Owner:SUPER SONIC IMAGINE

Test Battery System and Method for Assessment of Auditory Function

A test battery method and system (10, 100, 200, 225) for use in assessing auditory function (e.g., the screening or diagnosis of impairments, fitting of hearing aids, etc.) is provided which performs one or more auditory tests including, for example, an acoustic reflectance test. Such an acoustic reflectance test may be a reflectance tympanometry test that includes a feedback system to control static pressure in the ear canal. Such acoustic reflectance tests may be used alone or in combination with one or more other auditory tests. Further, for example, such a battery of tests may include middle-ear muscle reflex tests in combination with one or more other auditory or hearing tests.
Owner:SONICOM

System and method for detecting structural damage

A system and method for detecting structural damage is provided that utilizes a general order perturbation methodology involving multiple perturbation parameters. The perturbation methodology is used iteratively in conjunction with an optimization method to identify the stiffness parameters of structures using natural frequencies and / or mode shape information. The stiffness parameters are then used to determine the location and extent of damage in a structure. A novel stochastic model is developed to model the random impact series produced manually or to generate a random impact series in a random impact device. The random impact series method or the random impact device can be used to excite a structure and generate vibration information used to obtain the stiffness parameters of the structure. The method or the device can also just be used for modal testing purposes. The random impact device is a high energy, random, and high signal-to-noise ratio system.
Owner:UNIV OF MARYLAND BALTIMORE COUNTY

Apparatus for measuring parameters of a flowing multiphase mixture

An apparatus 10 is provided that measures the speed of sound propagating in a multiphase mixture to determine parameters, such as mixture quality, particle size, vapor / mass ratio, liquid / vapor ratio, mass flow rate, enthalpy and volumetric flow rate of the flow in a pipe or unconfined space, for example, using acoustic and / or dynamic pressures. The apparatus includes a pair of ultrasonic transducers disposed axially along the pipe for measuring the transit time of an ultrasonic signal to propagate from one ultrasonic transducer to the other ultrasonic transducer. A signal process, responsive to said transit time signal, provides a signal representative of the speed of sound of the mixture. An SOS processing unit then provides an output signal indicative of at least one parameter of the mixture flowing through the pipe. The frequency of the ultrasonic signal is sufficiently low to minimize scatter from particle / liquid within the mixture. The frequency based sound speed is determined utilizing a dispersion model to determine the at least one parameter of the fluid flow and / or mixture.
Owner:CIDRA CORP SERVICES

Method and apparatus for determining and assessing a characteristic of a material

An acoustic energy-based, non-contact or contact testing approach provides low cost, highly accurate, and reliable information to (a) identify flaws and anomalies and (b) assess the integrity of a particular material. This approach is not hindered by surface conditions or impediments, and indeed, looks beneath the surface of the material by propagating an acoustic wave through the material using two differential transducers. A dynamic differential measurement is made of the material under a load condition and an unloaded condition that allows identification and assessment of various characteristics of the material. Multiple “windows” of information may be generated that permit (a) direct detection of flaws, defects, and anomalies using a scattering technique, (b) detection of crack closure and opening used to assess the stability of the material, (c) determination of strain on the material which relates to its performance, and (d) determination of defect dynamics linked to the defect size and stability.
Owner:LUNA INNOVATIONS

Implantable pedometer

An implantable pedometer for measuring the amount of joint use is disclosed. The implantable pedometer includes a sensor adapted for detecting indicators of joint usage. A counter is configured for storing count data corresponding to the number of indicators detected by the sensor and a telemetry circuit is configured for transmitting the count data outside of the body.
Owner:WARSAW ORTHOPEDIC INC +1

Non-destructive testing of pipes

To perform a non-destructive condition assessment of a pipe carrying a fluid, an actual value representative of the propagation velocity of an acoustic disturbance propagating between two longitudinally separated points on the pipe is determined. A corresponding predicted value for the propagation velocity is computed as a function of at least one wall thickness parameter of the pipe by using a theoretical model for the propagation of acoustic waves in the pipe that assumes said pipe has a finite wall thickness with a predetermined circumferential thickness profile. The wall thickness parameter is then computed by matching the actual value with the predicted value, for example, by substituting the actual value in a formula predicting the theoretical value.
Owner:MUELLER INT LLC

Acoustic propagation velocity modeling methods, apparatus and systems

Methods, apparatus, and systems for accurately estimating acoustic propagation velocity are described. One method comprises deploying in a marine environment a towed seismic spread comprising a plurality of acoustic positioning transmitters and a plurality of positioning point receivers, and using travel times for signals between at least some of the transmitters and point receivers to derive a mathematical model describing acoustic propagation velocity for the marine environment as a function of at least one spread spatial dimension, distances between transmitters and receivers, and any combination thereof. This abstract is provided to comply with the rules requiring an abstract, and allows a reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Owner:WESTERNGECO LLC

Acoustic inspection device

An ultrasound inspection apparatus particularly adapted to examine containers (sealed or unsealed) containing a liquid or solid bulk material. The apparatus has an overall configuration of a hand held pistol with a front transducer contact surface that is positioned against a front wall of the container. An ultrasound pulse is transmitted from the apparatus to be reflected from a back wall of a container being investigated. The received echo pulse is converted to a digital waveform. The waveform is analyzed relative to temperature, travel distance of the pulse(s), and time of travel to ascertain characteristics of the liquid or other materials and to provide identification of the same.
Owner:BATTELLE MEMORIAL INST

Integrated interface electronics for reconfigurable sensor array

An integrated switch matrix for reconfiguring subelements of a mosaic sensor array to form elements. The configuration of the switch matrix is fully programmable. The switch matrix includes access switches that connect subelements to bus lines and matrix switches that connect subelements to subelements. Each subelement has a unit switch cell comprising at least one access switch, at least one matrix switch, a respective memory element for storing the future state of each switch, and a respective control circuit for each switch. The access and matrix switches are of a type having the ability to memorize control data representing the current switch state of the switch, which control data includes a data bit input to turn-on / off circuits incorporated in the control circuit. The sensor array and the switching matrix may be built in different strata of a co-integrated structure or they may be built on separate wafers that are electrically connected. If the sensors are arranged on a hexagonal grid, the unit switch cells may be arranged on either a hexagonal or rectangular grid.
Owner:GENERAL ELECTRIC CO

Apparatus and method for analyzing a liquid in a capillary tube of a hematology instrument

An apparatus and method for determining the density and fluid-type of a fluid flowing in a capillary tube, the velocity and viscosity of a blood sample flowing in a capillary tube, the erythrocyte sedimentation rate (ESR) of a blood sample after flow has been brought to an abrupt stop in a capillary tube, and / or the zeta sedimentation rate (ZSR) of a blood sample after flow has been brought to an abrupt stop in a capillary tube. These measurements are accomplished by directing a waveform pulse, such as an ultrasound pulse, at a pre-determined frequency transversely across the capillary tube and sample fluid, and by determining the flight of time of the pulse through the capillary tube and sample fluid and / or the Doppler shift of the echo signals reflecting off cells moving forwardly or transversely within a flowing, or stationary, blood sample.
Owner:COULTER INTERNATIONAL CORPORATION

Fluid parameter measurement for industrial sensing applications using acoustic pressures

In industrial sensing applications at least one parameter of at least one fluid in a pipe 12 is measured using a spatial array of acoustic pressure sensors 14,16,18 placed at predetermined axial locations x1, x2, x3 along the pipe 12. The pressure sensors 14,16,18 provide acoustic pressure signals P1(t), P2(t), P3(t) on lines 20,22,24 which are provided to signal processing logic 60 which determines the speed of sound amix of the fluid (or mixture) in the pipe 12 using acoustic spatial array signal processing techniques with the direction of propagation of the acoustic signals along the longitudinal axis of the pipe 12. Numerous spatial array-processing techniques may be employed to determine the speed of sound amix. The speed of sound amix is provided to logic 48, which calculates the percent composition of the mixture, e.g., water fraction, or any other parameter of the mixture, or fluid, which is related to the sound speed amix. The logic 60 may also determine the Mach number Mx of the fluid. The acoustic pressure signals P1(t), P2(t), P3(t) measured are lower frequency (and longer wavelength) signals than those used for ultrasonic flow meters, and thus is more tolerant to inhomogeneities in the flow. No external source is required and thus may operate using passive listening. The invention will work with arbitrary sensor spacing and with as few as two sensors if certain information is known about the acoustic properties of the system. The sensor may also be combined with an instrument, an opto-electronic converter and a controller in an industrial process control system.
Owner:EXPRO METERS

Methods for ultrasonic inspection of spot and seam resistance welds in metallic sheets and a spot weld examination probe system (SWEPS)

An external focused ultrasonic beam, non-destructive, open-air, inspection method of sheet metal spot and seam weldments using a probe in combination with motion measurement of the probe over the weldments during inspection without immersion of the material. Reflected ultrasonic waves are received and signals produced and processed or displayed as A-scan, B-scan and C-scan images that are easily recognized. An A-Scan is based on the time-of-flight difference between the outer surface, the weldment and inner and opposite surfaces of the component. B-scan and C-scan indicate the degree of weld fusion and provide data relative to fused thickness and defects sheet metal or welds. A special purpose scanner that enables ultrasonic examination welds. Scanner is pencil like ultrasonic probe with bearing face and position sensing device disposed adjacent a weld position. Scanner collects data for method to determine various characteristics of welded items.
Owner:APPLIED METRICS

Apparatus and method for measuring parameters of a mixture having solid particles suspended in a fluid flowing in a pipe

An apparatus 10 and method is provided that includes a spatial array of unsteady pressure sensors 15-18 placed at predetermined axial locations x1-xN disposed axially along a pipe 14 for measuring at least one parameter of a solid particle / fluid mixture 12 flowing in the pipe 14. The pressure sensors 15-18 provide acoustic pressure signals P1(t)-PN(t) to a signal processing unit 30 which determines the speed of sound amix(ω) of the particle / fluid mixture 12 in the pipe 14 using acoustic spatial array signal processing techniques. The primary parameters to be measured include fluid / particle concentration, fluid / particle mixture volumetric flow, and particle size. Frequency based sound speed is determined utilizing a dispersion model to determine the parameters of interest. the calculating the at least one parameter uses an acoustic pressure to calculate
Owner:EXPRO METERS

Graphene and Hexagonal Boron Nitride Devices

Graphene layers, hexagonal boron nitride (hBN) layers, as well as other materials made of primarily sp2 bonded atoms and associated methods are disclosed. In one aspect, the present invention provides graphene and hBN devices. In one aspect, for example, an electronic device is provided including a graphene layer and a planar hBN layer operably associated with the graphene layer and forming a functional interface therebetween. Numerous functional interfaces are contemplated, depending on the desired functionality of the device.
Owner:SUNG CHIEN MIN

Determination of acoustic velocity in bone

A method for determining an acoustic velocity in a segment of a bone covered with a layer of soft tissue having an outer surface, which includes determining a first travel time of a first ultrasonic wave along a first path from the outer surface back to the outer surface which path includes at least a first part of the bone segment together with determining a second travel time of a second ultrasonic wave along a second path from the outer surface back to the outer surface, which path includes at least a second part of the bone segment and also determining a third travel time of a third ultrasonic wave along a third path from the outer surface back to the outer surface which path includes at least a third part of the bone segment, and deriving the acoustic velocity in the segment of bone from the three determined travel times.
Owner:BEAM MED

Methods and apparatus for multi-parameter acoustic signature inspection

A multiparameter acoustic signature inspection device and method are described for non-invasive inspection of containers. Dual acoustic signatures discriminate between various fluids and materials for identification of the same.
Owner:BATTELLE MEMORIAL INST

Methods and devices for hearing damage notification and intervention

ActiveUS20080205660A1Potential for hearing damageMinimize Hearing DamageVibration measurement in solidsOptical rangefindersMedicineLoudspeaker
At least one exemplary embodiment is directed to a method of monitoring hearing health comprising: measuring a first acoustic sound pressure level due to an ambient audio signal; measuring a second acoustic sound pressure level due to an emitted audio signal from a speaker; calculating a total sound pressure level dosage, where the total sound pressure level dosage is calculated using the first acoustic sound pressure level and a first time span, and the second acoustic sound pressure level and a second time span associated, where the first time span is the time associated with the measured first acoustic sound pressure level and second time span is the time associated with the measured second acoustic sound pressure level; and sending a notification signal when total sound pressure level dosage is greater than a threshold value.
Owner:STATON TECHIYA LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products