Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

277results about How to "Improve turbine efficiency" patented technology

Combined cooling and power plant with water extraction

A turbine engine system and a method for using the turbine engine system that includes at least one low-pressure compressor, at least one high-pressure compressor, at least one low-pressure turbine, and at least one high-pressure turbine. In addition, the turbine engine system includes an absorption refrigeration system that is used to pre-cool an air-gas mixture before it enters the high-pressure compressor. As such, the pre-cooled mixture is easier to compress, thereby increasing the thermal efficiency of the turbine engine. Additionally, the exhaust heat from the air-gas mixture that is pre-cooled may be used to drive the absorption refrigeration system. Lastly, water, may be extracted from the evaporator of the absorption refrigeration cycle.
Owner:UNIV OF FLORIDA RES FOUNDATION INC

7FAstage 1 abradable coatings and method for making same

A method of applying a profiled abradable coating onto a substrate in which an abradable ceramic coating composition is applied to a metal substrate using one or more coating application techniques to produce a defined ceramic pattern without requiring a separate web or grid to be brazed onto the substrate. The invention is particularly designed to withstand the higher operating temperatures encountered with the stage 1 section of 7FA+e gas turbines to allow for increased coating life without significant deterioration in structural or functional integrity. Typically, the grid pattern coating begins approximately 0.431″ after the leading edge of the shroud, and ends approximately 1.60″ before the trailing edge of the shroud. In the case of diamond-shaped patterns, the grid pattern will be about 0.28″ long and 0.28″ wide, with an overall thickness of about 0.46.″ The coatings thus provide the required levels of abradability and leakage performance and may be applied as a chevron or diamond pattern with the shape oriented such that the diagonals run perpendicular and parallel to the sides of the shroud.
Owner:GENERAL ELECTRIC CO

Control system for a wind power plant

A control system for a wind power plant that includes a damage module and a control module. The damage module compares existing stress conditions on one or more component parts of the wind power plant to current energy generating costs. The control module alters electric power generated by the wind power plant based upon the comparison.
Owner:GENERAL ELECTRIC CO

Method of and apparatus for a multi-stage boundary layer engine and process cell

InactiveUS20050169743A1Improve turbine efficiencyIncrease efficiency and reliability and flexibilityMaterial nanotechnologyInfluencers using Magnus effectCombustion chamberClosed loop
A multi-staged boundary layer engine and process cell, (based on the effect known as adhesion and viscosity) which achieves high thermal efficiencies and high mechanical power output for use in the power generation, geothermal, energy recovery, solar, transportation, hydrogen production, desalinating water and hydroelectric fields. The design is novel with a dovetail attachment of the disc packs, allowing lower stress and allowing the use of next generation materials such as ceramics, composites and nanocomposites to improve the maximum temperature and the maximum RPM of the engine, thereby producing more horsepower and torque. In addition, this invention includes multi-stage vacuum, an external combustion chamber and condenser stages to improve the vortex flow through the primary disc pack cell. This engine will also encompass a closed loop cycle for ultimate efficiencies. This invention will also include the use of catalysts and / or electrical polarities applied to the disc pack and the disc pack / casing respectively to achieve low NOx and also to achieve process cell capability for applications such as desalinization and hydrogen generation.
Owner:CENTRIPETAL DYNAMICS

Microcircuit cooling for a turbine blade tip

An improved cooling design and method for cooling airfoils within a gas turbine engine is provided which includes an embedded microcircuit that traverses a tip between a suction sidewall and a pressure sidewall of the airfoil. The microcircuit includes at least on inlet disposed proximate to the tip and one of the sidewalls for receiving cooling air from an internal cooling cavity of the airfoil and at least outlet disposed proximate to the tip through which the cooling air ejects into a region outside the airfoil.
Owner:RTX CORP

Method and apparatus for cooling an airfoil

ActiveUS6955522B2Increased uniformity and durabilityCooler leading edge designElectronic time-piece structural detailsPump componentsLeading edgeEnhanced heat transfer
An improved cooling design and method for cooling airfoils within a gas turbine engine is provided which includes a plenum longitudinally located within the leading edge of the airfoils. Within the plenum are positioned a plurality of turbulence promoters to provide enhance heat transfer within the leading edge. Also, the cooling design includes a plurality of inlets to receive cooling air from an internal cavity of the airfoil as well as a plurality of outlets located within a trench on the exterior surface of the leading edge through which the cooling air exits to film cool leading edge.
Owner:RTX CORP

Flow enhancement for underwater turbine

A flow enhancement improvement for an underwater turbine generator (10) is disclosed wherein a longitudinal hole (240) is disposed in the central area (26), typically a hub (20) of the generator (10), and a second, augmentor duct (41), preferably rigid, is disposed about the outer duct (40) or housing of the unit to create a slot (200) area. The slot (200) and hollow hub (20) create areas of smooth, laminar fluid flow. The leading edges of the hub (20) or central ring and the augmentor (41) and outer ducts (40) are elliptical to enhance the fluid dynamics of the structure.
Owner:CLEAN CURRENT PARTNERSHIP

System for sealing an inner retainer segment and support ring in a gas turbine and methods therefor

Arcuate seal layers conforming with one another are disposed between inner retainer segments and inner rails of nozzle segments of a gas turbine. The layers are secured to the aft axial face of the segments and project radially outwardly to seal against the forward axial faces of the rails. The rear axial faces of the rails have chordal seals for sealing against the forward axial faces of the support rings. The seal layers have radial cuts misaligned with one another in an axial direction to preclude leakage flows through gaps formed by the cuts. Arcuate spacers are staggered circumferentially with the arcuate retainer segments whereby an intermediate pressure plenum is formed between the finger seals and chordal seals.
Owner:GENERAL ELECTRIC CO

Microcircuit cooling for a turbine blade

A turbine blade is provided comprising an internal cavity into which cooling air is flowable, an external wall and a first, second and third cooling circuits embedded with the wall. The cooling circuits include inlets that connect each respective cooling circuit with a cavity to provide a cooling air flow path into the respective cooling circuit. The cooling circuits also include an exit aperture that provides a cooling air flow path out of the respective cooling circuits. The cooling circuits are configured to increase the temperature of the cooling air as it travels from the inlet to the exit aperture. In the exemplary embodiment, the inlets are aligned with the direction of counter-rotating flow circulations experienced by the inner surface of the wall caused by Coriolis flow effects on the cooling air flowing inside the cavity.
Owner:RTX CORP

Method and system for a turbocharged engine

ActiveUS8479511B2Without compromising boost performanceBoosted airchargeValve arrangementsElectrical controlEngine cycleAutomotive engineering
Methods and systems are provided for a boosted engine having a split intake system coupled to a split exhaust system. Aircharges of differing composition, pressure, and temperature may be delivered to the engine through the split intake system at different points of an engine cycle. In this way, boost and EGR benefits may be extended.
Owner:FORD GLOBAL TECH LLC

Microcircuit cooling for a turbine airfoil

A turbine airfoil includes a plurality of cooling circuits embedded within the pressure and suction sidewalls and a first and a second flow passage. The first flow passage feeds the coolant fluid to the cooling circuits that are embedded only within the pressure sidewall and the second flow passage feeds the coolant fluid to the cooling circuits that are embedded only within the suction sidewall. A method embodiment of the present comprises placing the inlets of the cooling circuits embedded within the first sidewall in flow communication with only one of the flow passages and placing the inlets of the cooling circuits embedded within the second sidewall in flow communication with at least one of the other flow passages to minimize the difference in sink pressures of the suction and pressure sidewalls to ensure ingestion of the coolant fluid into the inlets of the respective cooling circuits.
Owner:RTX CORP

Turbine blade cooling system with bifurcated mid-chord cooling chamber

A cooling system for a turbine blade of a turbine engine having a bifurcated mid-chord cooling chamber for reducing the temperature of the blade. The bifurcated mid-chord cooling chamber may be formed from a pressure side serpentine cooling channel and a suction side serpentine cooling channel. The pressure side and suction side serpentine cooling channels may flow counter to each other, thereby yielding a more uniform temperature distribution than conventional serpentine cooling channels.
Owner:SIEMENS ENERGY INC

Turbine blade cooling system with bifurcated mid-chord cooling chamber

A cooling system for a turbine blade of a turbine engine having a bifurcated mid-chord cooling chamber for reducing the temperature of the blade. The bifurcated mid-chord cooling chamber may be formed from a pressure side serpentine cooling channel and a suction side serpentine cooling channel. The pressure side and suction side serpentine cooling channels may flow counter to each other, thereby yielding a more uniform temperature distribution than conventional serpentine cooling channels.
Owner:SIEMENS ENERGY INC

Turbine bucket airfoil cooling hole location, style and configuration

First, second and third sets of cooling holes are provided in a turbine airfoil. The first set of holes adjacent a leading edge have turbulators commencing at a predetermined distance from the root of the airfoil and terminating short of the airfoil tip. A second set of cooling holes have turbulators commencing at a greater distance from the platform than the turbulators of the first set and terminating short of the airfoil tip at a greater distance from the tip than the turbulators of the first set of holes. A third set of holes adjacent the trailing edge has smooth bores. The size, location, style and configuration of the cooling holes increases bulk creep part life and overall efficiency of the turbine.
Owner:GENERAL ELECTRIC CO

Microcircuit airfoil mainbody

A cooling circuit disposed within a first wall portion and a second wall portion of a wall for use in a gas turbine engine is provided. The cooling circuit includes a plurality of inlet apertures disposed in the first wall portion to provide a flow path of cooling air into the cooling circuit, a first exit slot disposed in the second wall portion to provide a cooling air flow path out of the cooling circuit, a plurality of pedestals arranged in rows extending between the first wall portion and the second wall portion and a first elongated pedestal disposed radially and extending between the first and second wall portions. The first elongated pedestal is positioned between the pedestals and the first exit slot.
Owner:RTX CORP

Method of and apparatus for a multi-stage boundary layer engine and process cell

A multi-staged boundary layer engine and process cell, (based on the effect known as adhesion and viscosity) which achieves high thermal efficiencies and high mechanical power output for use in the power generation, geothermal, energy recovery, solar, transportation, hydrogen production, desalinating water and hydroelectric fields. The design is novel with a dovetail attachment of the disc packs, allowing lower stress and allowing the use of next generation materials such as ceramics, composites and nanocomposites to improve the maximum temperature and the maximum RPM of the engine, thereby producing more horsepower and torque. In addition, this invention includes multi-stage vacuum, an external combustion chamber and condenser stages to improve the vortex flow through the primary disc pack cell. This engine will also encompass a closed loop cycle for ultimate efficiencies. This invention will also include the use of catalysts and / or electrical polarities applied to the disc pack and the disc pack / casing respectively to achieve low NOx and also to achieve process cell capability for applications such as desalinization and hydrogen generation.
Owner:CENTRIPETAL DYNAMICS

Steam cooling method for gas turbine combustor and apparatus therefor

This invention concerns the use of pressurized steam as the cooling medium for a gas turbine combustor. It is distinguished by the following. Steam supply manifolds or ports for the cooling steam are provided on the gas inlet and outlet sides of the combustion chamber in the gas turbine combustor. A steam exhaust manifold or port for the cooling steam is provided between the gas inlet and outlet sides, in approximately the center of the chamber. Cooling channels for the steam are created in the external wall panel of the chamber between the steam supply manifolds and the exhaust manifold. The steam supplied into the wall panel through the steam supply manifolds on the gas inlet and outlet sides of the chamber is exhausted to the exterior via the steam exhaust manifold in the center of the chamber. This design allows pressurized steam with a high thermal capacity to be used to effectively cool the wall panels of the combustor, which are exposed to extremely hot combustion gases.
Owner:TOHOKU ELECTRIC POWER +1

Radial-flow turbine wheel

A radial-flow turbine wheel is provided. The radial-flow turbine wheel includes a hub having an outer radius gradually increasing from a front end to a rear end, a rear periphery of the hub being radially extended in a plane generally perpendicular to a center axis, and a plurality of turbine blades formed around the hub at constant intervals. A plurality of slots is formed by inward cut at the rear periphery of the hub between the turbine blades of the hub. The turbine wheel restrains creation and propagation of crack due to thermal stress, as well as improving a turbine efficiency.
Owner:HANWHA POWER SYST CO LTD

Turbine blade dual channel cooling system

InactiveUS20100226789A1Prevent temperature overageAvoid Blade DamageEngine manufacturePump componentsLeading edgeTurbine blade
A turbine blade having an internal cooling system with dual serpentine cooling channels in communication with tip cooling channels is disclosed. In at least one embodiment, the cooling system may include first and second tip cooling channels in communication with the first and second serpentine cooling channels, respectively. The first tip cooling channel may extend from the leading edge to the trailing edge and be formed from a first suction side tip cooling channel and a first pressure side tip cooling channel. The second tip cooling channel may extend from a midchord region toward the trailing edge and may be positioned between the pressure and suction sides such that the second tip cooling channel is positioned generally between the first suction side and pressure side tip cooling channels. The first and second tip cooling channels may exhaust cooling fluids through the trailing edge.
Owner:SIEMENS ENERGY INC

Vertical axis wind turbine with angled braces

An improved wind turbine comprises: (i) a turbine rotor with a support platform; (ii) a rotatable vertical shaft extending from or through that platform; (iii) at least one bearing for the shaft; (iv) a plurality of horizontally disposed, box-shaped wind catchment vanes connected about the shaft; and (v) a plurality of angled braces affixed to the platform for reducing wind force leverage effects and bearing wear.
Owner:BOONE DANIEL N +2

Gas turbine cooling stationary blade

PCT No. PCT / JP98 / 01958 Sec. 371 Date Dec. 17, 1998 Sec. 102(e) Date Dec. 17, 1998 PCT Filed Apr. 28, 1998 PCT Pub. No. WO98 / 50684 PCT Pub. Date Nov. 12, 1998In a cooled stationary blade assembly for a gas turbine, an interior of a blade and an inner shroud are cooled by steam to eliminate the use of air cooling. Steam passages 33A, 33B, 33C, 33D, 33E and 33F are provided in the stationary blade 30. The cooling steam 39 is introduced from the steam passage 33A on the front edge side through an outer shroud and passes, in order, through the steam passages 33B, 33C, 33D, and 33E to flow into the steam passage 33F at the rear edge side to cool the interior of the blade, and is recovered through the outer shroud from the upper portion of the steam passage 33F. A portion of the steam from the steam passage 33A is introduced into the inner shroud 31, enters to steam passages 20 from a steam introduction passage 22, branches to the right and left through both end portions, and flows out into the steam passage 33F at the rear edge from a steam discharge passage 21. Not only the interior of the blade, but also the interior of the inner shroud 31 is cooled by the steam so that the cooling air is dispensed with.
Owner:MITSUBISHI HITACHIPOWER SYST LTD

Combined cooling and power plant with water extraction

A turbine engine system and a method for using the turbine engine system that includes at least one low-pressure compressor, at least one high-pressure compressor, at least one low-pressure turbine, and at least one high-pressure turbine. In addition, the turbine engine system includes an absorption refrigeration system that is used to pre-cool an air-gas mixture before it enters the high-pressure compressor. As such, the pre-cooled mixture is easier to compress, thereby increasing the thermal efficiency of the turbine engine. Additionally, the exhaust heat from the air-gas mixture that is pre-cooled may be used to drive the absorption refrigeration system. Lastly, water, may be extracted from the evaporator of the absorption refrigeration cycle.
Owner:UNIV OF FLORIDA RES FOUNDATION INC

Gravity-flap, savonius-type wind turbine device

A wind turbine devices comprises a vertically rotating shaft; and a plurality of horizontally disposed, box-shaped wind catchment vanes connected about the shaft, each vane having an open front face to catch wind flow and a lightweight flap on their rear face that closes when acted upon by wind force to rotate the vane about the shaft. When the latter flap opens, wind spills through the vane thus increasing efficiency.
Owner:BOONE DANIEL N

Modular system for generating electricity from moving fluid

A modular system for producing electricity from the channel, river, ocean or tidal water currents and wind is disclosed. The embodiments of the system comprise a set of interconnected modules. Each module contains a fluid flow energy converter positioned in a protecting housing. A converter consists of a vertical axis underwater hydro-turbine or wind turbine, connected to the electrical generator. The turbine is essentially a paddlewheel having an arrangement of attached paddles with mutually perpendicularly oriented asymmetric blades that are fixed to the poles at both ends. Such orientation of blades provides a positive feedback minimizing the blades' friction while maximizing a drag force and maximizing the turbine's efficiency. The electrical generator transforms the rotational energy of the turbine into electricity. An array of modules may be arranged side by side, thus providing versatile configurations of submersible hydroelectric or wind power systems, which are inexpensive to build, install and maintain.
Owner:PETROUNEVITCH EDOUARD

System for sealing an inner retainer segment and support ring in a gas turbine and methods therefor

InactiveUS20050244267A1Improve sealingIncreasing turbine engine efficiencyPump componentsStatorsLeakage flowGas turbines
Arcuate seal layers conforming with one another are disposed between inner retainer segments and inner rails of nozzle segments of a gas turbine. The layers are secured to the aft axial face of the segments and project radially outwardly to seal against the forward axial faces of the rails. The rear axial faces of the rails have chordal seals for sealing against the forward axial faces of the support rings. The seal layers have radial cuts misaligned with one another in an axial direction to preclude leakage flows through gaps formed by the cuts. Arcuate spacers are staggered circumferentially with the arcuate retainer segments whereby an intermediate pressure plenum is formed between the finger seals and chordal seals.
Owner:GENERAL ELECTRIC CO

Gravity-flap, savonius-type wind turbine device

A wind turbine devices comprises a vertically rotating shaft; and a plurality of horizontally disposed, box-shaped wind catchment vanes connected about the shaft, each vane having an open front face to catch wind flow and a lightweight flap on their rear face that closes when acted upon by wind force to rotate the vane about the shaft. When the latter flap opens, wind spills through the vane thus increasing efficiency.
Owner:BOONE DANIEL N

Gas turbine engine

An aircraft gas turbine engine (110) comprises first and second non-coaxial propulsors (113a, 113b), each propulsor (113a, 113b) being driven by a common gas turbine engine core (176) comprising a propulsor drive turbine (143) arranged to drive the first and second propulsors (113a, 113b) via a propulsor drive coupling (127). The core (176) further comprises a first core module (190) comprising a first compressor (129) and a first turbine (131) interconnected by a first shaft (177), and a second core module (191) comprising a second compressor (128) and the propulsor drive turbine (143) interconnected by a second shaft (127), the first and second core modules (190, 191) being axially spaced.
Owner:ROLLS ROYCE PLC

Wind turbine based energy storage system and method using heavy weighted devices

An energy storage system, and related method, comprises a plurality of wind turbines, each with a vertical shaft that passes through a support platform. One or more braces may be affixed to each vertical shaft at one end of this platform, at an angle of less than 60 degrees, preferably about 45 degrees. At least one heavily weighted device is configured and disposed to be raised with rotation of the wind turbine about its vertical shaft. The subsequent lowering of that weighted device generates electrical energies for immediate use. Alternatively, the weighted device may be suspended for storage of energy and subsequent use. Preferred embodiments include at least one energy storage system for holding excess unused energy. Representative devices include a weighted cylinder on a shaft or cable, and one or more railcars on a series of inclined tracks.
Owner:BOONE DANIEL

Perimeter-cooled turbine bucket airfoil cooling hole location, style and configuration

A turbine stage one bucket has an airfoil having a plurality of cooling holes passing through the airfoil from 0% span to 100% span whereby cooling air exits the airfoil tip into the hot gas path. X and Y coordinate values are given in Table I, locating the holes relative to the airfoil profile at airfoil profile sections of 5%, 50% and 90% span, Table I also giving the hole diameters. In this manner, cooling hole optimization for this turbine bucket airfoil is achieved. The cooling holes are also located in relation to the profile of the bucket airfoil given by the X, Y and Z coordinate values of Table II, the two coordinate systems having the same origin.
Owner:GENERAL ELECTRIC CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products