Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

507results about How to "Reduce power output" patented technology

Method and system for assuring near uniform capacity and quality of channels in cells of wireless communications systems having cellular architectures

InactiveUS6011970AMaximized cellular concept of frequency reuseReduce power outputRadio/inductive link selection arrangementsTransmission monitoringCellular architectureSignal-to-noise ratio (imaging)
A method and system for use with wireless communication systems having a cellular architecture with at least a first and a second cell. The method and system provided ensure near uniform capacity and quality of channels within the second cell via the following steps. The noise signal power in unused data channels within the second cell is monitored. When a request for channel access is received, a determination is made whether the request for channel access is either a request for handoff from the first cell into the second cell, or not. In the event that the request is not a request for handoff, a determination is made whether idle channels exist to satisfy the request for channel access. In the event of a determination either that the request for channel access is a request for handoff, or both that the request is not a request for handoff and that idle channels exist to satisfy the request, a measured received signal power of a mobile unit subscriber unit making the request is determined. One of the unused channels in the second cell is then preferentially assigned to the mobile subscriber unit where such preference in assigning is to assign a channel, provided that a signal to noise ratio calculated upon the monitored received signal power and the monitored noise signal power of the preferentially assigned noisy channel meets or exceeds a required signal to noise ratio.
Owner:NORTEL NETWORKS LTD

System and method for controlling a power generating system

This invention overcomes the disadvantages of the prior art by providing a power generating system particularly suitable for field use in remote locations, which is fuel-efficient, relatively quiet, tolerant of dust, capable of operating on low grade logistics and diesel-like fuels and capable of generating between 500 W and 2 KW of continuous electrical power. This generating system employs a two-cycle MICE generator having a piston that operates within a cylinder, and an interconnected, axially moving piston shaft that oscillates an alternator coil within a magnetic core. The piston shaft is attached to, and resisted by, the free end of a strong spring with a second, opposing end fixed to the MICE casing. To control operation of the MICE generator a dual clipper circuit is operatively connected with the alternator coil. The clipper circuit senses the current and at least two voltage levels and applies at least two respective loads in response to the sensed voltage levels and current so as to (a) prevent overstroke of the piston and (b) control power output of the alternator coil. The MICE generator also includes a fuel intake preheater that selectively heats fuel/air mixture entering the casing and a controller that senses load on the alternator coil varies a level of preheating to thereby control a level of power output.
Owner:AERODYNE RES

Method of integrating handoff queuing with adaptive handoff reserve channels

InactiveUS6181941B1Maximized cellular concept of frequency reuseReduce power outputNetwork traffic/resource managementRadio/inductive link selection arrangementsCellular architectureCommunications system
A method and system, for use with wireless communications systems having a cellular architecture, for achieving near real time reservation of channels in a first cell for servicing call-in-progress handoffs from other cells such that blocked calls originating within a first cell and blocked handoff of calls-in-progress from other cells are held within acceptable levels. The method and system specify that a minimum number of unutilized channels in a first cell be reserved for servicing call-in-progress handoffs. In the event that a request for a call-in-progress handoff from one of the other cells into the first cell cannot be serviced due to a lack of unutilized channels, the specified minimum number of reserved channels is dynamically adjusted upward and the request for a call-in-progress handoff that could not be serviced is enqueued. Enqueued requests are serviced in a first in first out fashion as unutilized channels become available. In the event that a request for a call-in-progress handoff from one of the other cells into the first cell can be serviced without being enqueued, the specified minimum number of reserved channels is dynamically adjusted downward such that a number of unutilized channels sufficient to service requests for handoff of calls-in-progress is dynamically maintained in a fashion that does not unduly restrict requests for call access from mobile subscriber units within the first cell.
Owner:APPLE INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products