Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

546results about "Free piston engines" patented technology

Power generating system

This invention overcomes the disadvantages of the prior art by providing a power generating system particularly suitable for field use in remote locations, which is fuel-efficient, relatively quiet, tolerant of dust, capable of operating on low grade logistics and diesel-like fuels and capable of generating between 500 W and 2 KW of continuous electrical power. This generator employs a miniature internal combustion engine/generator (MICE) having a piston moving within a cylinder arranged for two-cycle operation, and an interconnected, axially arranged piston shaft that oscillates an alternator coil within a magnetic core. The piston shaft is opposed by a strong, multiple-helix spring. The cylinder head, in which the piston operates, is cooled by moving (electrically pumped) fluid in a cooling head, or by another heat-transfer mechanism. The MICE generator's intake arrangement includes a preheater heated by a heated fluid flow thereon. The MICE generator is vibration-isolated using a base that supports the MICE on a plurality of soft coil springs. The MICE generator is encased in an acoustic enclosure having a shell composed of sheet metal or another stiff material extending from the base plate and being covered by a top side. Holes in the enclosure top are covered by porous discs that allow exhaust gasses from the internal muffler to pass therethrough. The acoustic enclosure resides in a large, typically portable, external package enclosure.
Owner:AERODYNE RES

Exhaust gas recirculation for a free piston engine

A free piston engine is configured with a pair of opposed engine cylinders located on opposite sides of a fluid pumping assembly. An inner piston assembly includes a pair of inner pistons, one each operatively located in a respective one of the engine cylinders, with a push rod connected between the inner pistons. The push rod extends through an inner pumping chamber in the fluid pumping assembly and forms a fluid plunger within this chamber. An outer piston assembly includes a pair of outer pistons, one each operatively located in a respective one of the engine cylinders, with at least one pull rod connected between the outer pistons. The pull rod extends through an outer pumping chamber in the fluid pumping assembly and forms a fluid plunger within this chamber. The movement of the inner and outer piston assemblies during engine operation will cause the fluid plungers to pump fluid from a low pressure container into a high pressure chamber as a means of storing the energy output from the engine. Alternatively, the piston assemblies may drive a linear alternator. The exhaust ports for each engine cylinder are sized and located to retain the desired amount of internal EGR in each cylinder without the need for exhaust valves. As an alternative, an external EGR system may supplement the internal EGR in order to obtain the desired EGR at the desired temperature.
Owner:FORD GLOBAL TECH LLC

Return flow scavenging type hydraulic free piston diesel engine

InactiveCN102705076AOmit the crankshaftReduce intermediate conversion linksInternal combustion piston enginesFree piston enginesHydraulic motorHydraulic pump
The invention discloses a return flow scavenging type hydraulic free piston diesel engine, which comprises a single-cylinder two-stroke diesel engine without a crankshaft connecting rod and a valve distribution mechanism, and a hydraulic system provided with a linear hydraulic pump and a hydraulic motor, wherein a piston in the single-cylinder two-stroke diesel engine is connected with a plunger in the hydraulic system, and a space in the linear hydraulic pump in the hydraulic system is divided into a high-pressure cavity and a low-pressure cavity; the piston in the single-cylinder two-stroke diesel engine can drive the linear hydraulic pump to output high-pressure oil in an expansion travel, and the high-pressure oil is output to the hydraulic motor from a pipe joint C; the piston is pushed back to an upper dead center from a lower dead center by the low-pressure oil end, so that a compression travel of the piston is completed. According to the invention, a crankshaft in the conventional internal combustion engine is omitted, and a middle conversion step of power output is reduced, so that the heat efficiency is about 5% higher than that of the conventional internal combustion engine, the diesel engine can be operated at a variable compression ratio, the best heat efficiency of a full operation work condition is ensured, and the fuel economy is improved.
Owner:JILIN UNIV

System and method for controlling a power generating system

This invention overcomes the disadvantages of the prior art by providing a power generating system particularly suitable for field use in remote locations, which is fuel-efficient, relatively quiet, tolerant of dust, capable of operating on low grade logistics and diesel-like fuels and capable of generating between 500 W and 2 KW of continuous electrical power. This generating system employs a two-cycle MICE generator having a piston that operates within a cylinder, and an interconnected, axially moving piston shaft that oscillates an alternator coil within a magnetic core. The piston shaft is attached to, and resisted by, the free end of a strong spring with a second, opposing end fixed to the MICE casing. To control operation of the MICE generator a dual clipper circuit is operatively connected with the alternator coil. The clipper circuit senses the current and at least two voltage levels and applies at least two respective loads in response to the sensed voltage levels and current so as to (a) prevent overstroke of the piston and (b) control power output of the alternator coil. The MICE generator also includes a fuel intake preheater that selectively heats fuel/air mixture entering the casing and a controller that senses load on the alternator coil varies a level of preheating to thereby control a level of power output.
Owner:AERODYNE RES

Position sensing for a free piston engine

A free piston engine is configured with a pair of opposed engine cylinders located on opposite sides of a fluid pumping assembly. An inner piston assembly includes a pair of inner pistons, one each operatively located in a respective one of the engine cylinders, with a push rod connected between the inner pistons. The push rod extends through an inner pumping chamber in the fluid pumping assembly and forms a fluid plunger within this chamber. Also connected between the pistons are a position sensor and a calibration position sensor that are employed to determine the position and velocity of the inner piston assembly. An outer piston assembly includes a pair of outer pistons, one each operatively located in a respective one of the engine cylinders, with at least one pull rod connected between the outer pistons. The pull rod extends through an outer pumping chamber in the fluid pumping assembly and forms a fluid plunger within this chamber. Also engaging the outer piston assembly are a position sensor and a calibration position sensor that are employed to determine the position and velocity of the outer piston assembly. The movement of the inner and outer piston assemblies during engine operation will cause the fluid plungers to pump fluid from a low pressure container into a high pressure chamber as a means of storing the energy output from the engine.
Owner:FORD MOTOR CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products