Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

612results about "Geothermal systems" patented technology

Systems and Methods for Combined Thermal and Compressed Gas Energy Conversion Systems

InactiveUS20100205960A1Cost-effective and efficient energy storageImprove efficiencyAuxillary drivesFrom solar energyThermal energyEngineering
The invention relates to systems and methods including an energy conversion system for storage and recovery of energy using compressed gas, a source of recovered thermal energy, and a heat-exchange subsystem in fluid communication with the energy conversion system and the source of recovered thermal energy.
Owner:SUSTAINX +1

Combined geothermal and solar thermal organic rankine cycle system

In a system where the thermal energy of a geothermal fluid is applied to an ORC system, the energy is enhanced by the use of solar energy to thereby increase the temperature of the fluid being applied by the ORC system. A single heat exchanger version provides for direct heat exchange relationship with the geothermal and solar fluids, whereas a two heat exchanger version provides for each of the geothermal and solar fluids to be in heat exchange relationship with the working medium of the ORC system. Control features are provided to selectively balance the various fluid flows in the system.
Owner:UNITED TECH CORP

Process and systems

An apparatus for recovering energy from an osmotic system, said apparatus comprising: (i) a feed stream (143,251); (ii) pressure means (140,150, 250, 254) to pressurise said feed stream; (iii) a manipulated osmosis unit (110,220,230); (iv) an energy recovery unit (120, 240, 260) in fluid connection with second solution side of the manipulated osmosis unit; (v) a reverse osmosis unit (130) receiving a feed from the energy recovery unit.
Owner:AL MAYAHI ABDULSALAM +1

Closed loop energy production from geothermal reservoirs

Apparatus and methods for recovering and using geothermal energy. Such methods include at least partially vaporizing a working fluid by passing it through a flow loop that at least partially extends into a heated subterranean zone and employing the vaporized working fluid to power a turbine. At least a portion of the flow loop can comprise a depleted or partially depleted hydrocarbon well.
Owner:CONOCOPHILLIPS CO

Plant for energy production

The invention provides a plant for production of energy, comprising any type of heat or energy source including but not limited to solar power sources, nuclear reactors, fossil fuel plants, wind power plants, tidal power plants, waste heat power plants and geothermal sources, operatively arranged at an input side of the plant, and heat delivery or energy production means such as turbine-electric generator sets, operatively arranged at a delivery side of the plant. The plant is distinctive in that it further comprises a thermal energy storage with integrated heat exchanger, comprising a solid state thermal storage material, a heat transfer fluid and means for energy input and output, wherein: the storage comprises at least one heat transfer container, solid state thermal storage material is arranged around the heat transfer container, the heat transfer container contains the heat transfer fluid and the means for energy input and output, so that all heat transferring convection and conduction by the heat transfer fluid takes place within the respective heat transfer container, the thermal energy storage with heat exchanger has been arranged inside thermal insulation, and the solid state thermal energy storage with heat exchanger, has been arranged between the input side and delivery side of the plant for storage and heat exchange of thermal energy, the storage is coupled directly or via an additional heat exchanger to the source and the storage is coupled directly or via an additional heat exchanger to the delivery side of the plant.
Owner:NEST

Method for exploiting compact dry heat rock geothermal energy by utilizing long horizontal well self-circulation structure

The invention relates to a field of geothermal energy development and provides a method for exploiting compact dry heat rock geothermal energy by utilizing a long horizontal well self-circulation structure. According to the invention, a single long horizontal well in a dry heat rock storage layer is utilized, an oil pipe-loop empty circulation structure of the single long horizontal well is adopted under a condition of not cracking the dry heat rock storage layer for performing circulation injection and production of heat carrying medium. During the injection process, a horizontal segment can be utilized fully for heating the heat carrying medium. During a production process, a prestress heat isolation oil tube is used for reducing heat loss of the heat carrying medium by using the prestress heat isolation oil tube. According to the invention, fluid loss caused by cracking can be avoided and the contact area of a well shaft and the storage layer is increased effectively due to the long horizontal segment. During the injection and production process, the temperature difference of the heat carrying medium also causes heat siphonage, so that ground injection and suction pump power is reduced effectively. At the same time, due to the closeness of the long horizontal well self-circulation structure, condition is provided for performance optimization of the heat carrying medium and problems of corrosion and scale formation are avoided and the heat collecting process becomes more reliable and stable.
Owner:CHINA UNIV OF PETROLEUM (EAST CHINA)

Osmotic Heat Engine

A method of converting thermal energy into mechanical work that uses a semi-permeable membrane to convert osmotic pressure into electrical power. A closed cycle pressure-retarded osmosis (PRO) process known as an osmotic heat engine (OHE) uses a concentrated ammonia-carbon dioxide draw solution to create high osmotic pressures which generate water flux through a semi-permeable membrane against a hydraulic pressure gradient. The depressurization of the increased draw solution volume in a turbine produces electrical power. The process is maintained in steady state operation through the separation of the diluted draw solution into a re-concentrated draw solution and deionized water working fluid, both for reuse in the osmotic heat engine.
Owner:YALE UNIV

Method of developing and producing deep geothermal reservoirs

The present invention relates to a method and system for extracting and / or utilizing thermal energy from rock formations. This Abstract is provided to comply with rules requiring an Abstract that allows a searcher or other reader to quickly ascertain subject matter of the technical disclosure. This Abstract is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Owner:TERRAWATT HLDG CORP

Middle/low-temperature geothermic efficient thermoelectric coupling combined supply system based on organic Rankine cycle (ORC)

The invention relates to a middle / low-temperature geothermic efficient thermoelectric coupling combined supply system based on an organic Rankine cycle (ORC), which has the main technical structure as follows: an ORC system, an absorption refrigeration system, a direct heat utilization system and an indirect heat utilization system are connected in series through a geothermic water supply pipeline. Specifically, after geothermic water supply is orderly connected to a first evaporator, a generator, a plate type heat exchanger and a third evaporator, the geothermic water supply is connected to inlets of a first condenser and a second evaporator in parallel, and the water discharged from the first condenser is introduced to a geothermic recharge well. Water discharged from a low-temperature side of the plate type heat exchanger is divided into two paths, one path is connected to a hot water storage box; and the other path is connected to a tail end device of the direct heat utilization system and then returns to a low-temperature water inlet of the plate type heat exchanger by means of a water pump. A valve and a water pump are orderly arranged between water sides of the first condenser and the second evaporator in series. According to the invention, geothermic tail water is adopted as a heat source so as to conform to energy saving and emission reduction requirements and be beneficial to environmental protection; and besides the utilization efficiency of the geothermic resources is improved, the system has a remarkable effect on reducing the emission of contaminants.
Owner:TIANJIN UNIV

Systems and methods for combined thermal and compressed gas energy conversion systems

The invention relates to systems and methods including an energy conversion system for storage and recovery of energy using compressed gas, a source of recovered thermal energy, and a heat-exchange subsystem in fluid communication with the energy conversion system and the source of recovered thermal energy.
Owner:SUSTAINX

Systems and methods for combined thermal and compressed gas energy conversion systems

The invention relates to systems and methods including an energy conversion system for storage and recovery of energy using compressed gas, a source of recovered thermal energy, and a heat-exchange subsystem in fluid communication with the energy conversion system and the source of recovered thermal energy.
Owner:SUSTAINX +1

Modular energy harvesting system

A modular energy harvesting system. The system preferably uses an organic Rankine cycle heat engine to recover energy from relatively low-temperature heat sources. The system is both modular and scalable. The components are preferably housed within shipping containers so that they may be easily transported by sea and over land. Two or more power harvesting modules may be assembled on a single site to increase the production capacity in a scalar fashion. Each of the integrated units preferably includes an oil-less turbine and motor.
Owner:CONRY RONALD DAVID

Process to obtain thermal and kinetic energy from a geothermal heat source using supercritical co2

Methods and systems for extracting geothermal energy from an underground hot dry rock reservoir using supercritical carbon dioxide are disclosed. In a first step, the methods and systems utilize a heat exchanger in a binary system to heat a secondary fluid that is used to perform work. In a second step, the supercritical carbon dioxide is transferred to a pseudo turbine (e.g., a free-piston linear engine) to perform additional work through expansion.
Owner:GREENFIRE PARTNERS

Renewable energy source energy storage hydrogen storage comprehensive generating system

The invention relates to a novel renewable energy source energy storing and uninterrupted utilizing system, in particular to an energy source comprehensive utilization system which produces hydrogen by electrolysis after generating by renewable energy source, achieves the energy storage aim by electrochemical pressurization and metal hydride hydrogen storage and utilizes proton exchange membrane fuel cell to generate electricity. The renewable energy source energy storage hydrogen storage comprehensive generating system comprises a renewable energy source generating system, a middle high pressure water electrolysis hydrogen production system, a metal hydride hydrogen storage system and a fuel cell generating system; wherein the electricity generated by the renewable energy source generating system produces hydrogen by virtue of the middle high pressure water electrolysis system, the hydrogen is directly stored in a metal hydride hydrogen storage device, and the hydrogen is supplied to the fuel cell generating system as fuel. The renewable energy source comprehensive application system can meet all-weather steady electricity supply requirement, can reliably operate for a long time, saves energy source, is efficient and environmentally friendly and can be an important generating mode for power supply in hydrogen energy time in the future.
Owner:无锡尚弗能源科技有限公司

Geothermal air conditioning system

Provided is a geothermal air conditioning system. The system includes a plurality of indoor units, at least one outdoor unit, a ground heat exchanger, and an auxiliary heat source. The plurality of indoor units condition indoor air, the at least one outdoor unit communicates with the indoor units via, a plurality of pipes, and includes an outdoor heat exchanger where heat exchange occurs, and a plurality of compressors for compressing coolant. The ground heat exchanger is connected with the outdoor heat exchanger of the outdoor unit, and laid under the ground to allow heat to be exchanged between ground heat and a circulating medium circulating through the ground heat exchanger. The auxiliary heat source is installed on one side of the outdoor unit to assist heat exchange of the outdoor heat exchanger.
Owner:LG ELECTRONICS INC

Power tower—system and method of using air flow generated by geothermal generated heat to drive turbines generators for the generation of electricity

Apparatus is provided having one or more SWEGS that may be configured to heat air in a draft power tower arrangement. In a closed loop, cold fluid may be pumped into the SWEGS and heated to a temperature in a range of e.g., 100° C.-300° C., and hot fluid pumped out of the SWEGS. This fluid flows through a heating element (e.g., a radiator or specially designed heat exchanger) that heats the air in the draft power tower arrangement.
Owner:GTHERM GEO INC

System and method of capturing geothermal heat from within a drilled well to generate electricity

A closed-loop, solid-state system generates electricity from geothermal heat from a well by flow of heat, without needing large quantities of water to conduct heat from the ground. The present invention contemplates uses for depleted oil or gas wells and newly drilled wells to generate electricity in an environmentally-friendly method. Geothermal heat is conducted from the Earth to a heat exchanging element to heat the contents of pipes. The pipes are insulated between the bottom of the well and the surface to minimize heat dissipation as the heated contents of the pipes travel to the surface.
Owner:PARDEV

Supercritical CO2 fluid fracturing enhancement type geothermal system experimental device and method

InactiveCN107905778AAccurate calculation of effectivenessSurveyConstructionsRock coreHydraulic fracturing
The invention relates to a supercritical CO2 fluid fracturing enhancement type geothermal system experimental device and method. Supercritical CO2 is injected through a gas source supply system and gas source supercharging equipment, accurate stress is applied to a rock core by designing a piston device, the permeability of hot dry rock fluid is maintained by adopting a pressure-proof and temperature resistant perforated plate, the hot dry rock fluid is externally connected to a fluid collecting chamber through a flow guiding groove, and meanwhile an adjustable sound emission probe is embeddedinto the fluid collecting chamber to monitor a sound emission event happening when a fracture expands in the hydraulic fracturing process. The supercritical CO2 fluid fracturing enhancement type geothermal system experimental device and method have the beneficial effects that integrated collection of information of hydraulic fracturing, strain, sound emission, permeability, heat energy recovery efficiency and the like of rock can be achieved under a confining pressure condition by utilizing the device, and the fracture initiation and expanding situations of a hydraulic fracture of the hot dryrock are researched; and a fracture initiation behavior and an expansion state of the hydraulic fracture under the high-temperature and high-pressure environmental conditions can be monitored in realtime, and meanwhile the heat energy mining rate can be calculated.
Owner:CHINA UNIV OF PETROLEUM (EAST CHINA)

Combined geothermal and solar thermal organic rankine cycle system

In a system where the thermal energy of a geothermal fluid is applied to an ORC system, the energy is enhanced by the use of solar energy to thereby increase the temperature of the fluid being applied by the ORC system. A single heat exchanger version provides for direct heat exchange relationship with the geothermal and solar fluids, whereas a two heat exchanger version provides for each of the geothermal and solar fluids to be in heat exchange relationship with the working medium of the ORC system. Control features are provided to selectively balance the various fluid flows in the system.
Owner:UNITED TECH CORP

Heat-electricity combined production system that utilizes solar energy and geothermal heat

A heat-electricity combined production system includes: a solar cell module in which a flow path through which a heat source side heating medium heated by solar heat flows, is formed and which generates electricity by solar light; a geothermal heat exchanger that absorbs geothermal heat through the heat source side heating medium; a heat pump including a heat source side heat exchanger that performs heat-exchange between the heat source side heating medium and a refrigerant and a load side heat exchanger that performs heat-exchange between the refrigerant and a load side heating medium; a controller that control the heat source side heating medium to pass through both the solar cell module and the geothermal heat exchanger; and a plurality of pipes that connect the solar cell module, the geothermal heat exchanger and the heat pump.
Owner:KOREA INST OF ENERGY RES

Method for exploring dry-hot-rock geotherm through underground heat siphon self-circulation

InactiveCN105863568ALow densityGo undergroundOther heat production devicesGeothermal energy generationSiphonGeothermal exploration
The invention relates to the field of geothermal exploitation and provides a method for exploring dry-hot-rock geotherm through underground heat siphon self-circulation. The method includes the steps that a heat-carrying medium circular flowing channel is built underground, and self-circulation flowing of the heat-carrying medium in the underground channel is achieved by fully utilizing the phenomenon of heat siphon caused by the density difference of the heat-carrying medium at various temperature differences. The circular flowing channel can be achieved by drilling two horizontal well holes in different depth positions of an injection and production well, and can also be achieved by fracturing fractures and an upper horizontal well hole of the well bottom injection and production well. The heat-carrying medium flowing in a circulating mode drives a turbine generator to rotate for power generation in the flowing process, and accordingly the dry-hot-rock geothermal energy is explored as electric energy. According to the method, the heat siphon phenomenon of the heat-carrying fluid is fully utilized, underground self-circulation flowing is achieved, extra power from the outside is not needed, and the method is suitable for geothermal exploration of dry-hot-rock reservoirs with high reservoir temperature and severe ground environment.
Owner:CHINA UNIV OF PETROLEUM (EAST CHINA)

Self-sustaining electric power generating system

A self-sustaining electrical power generating system includes a spring system that stores stored energy, the spring system having an input for recharging the stored energy and an output for releasing the stored energy, wherein the spring system generates a monitor signal based on a status parameter of the spring system and wherein the spring system releases the stored energy in accordance with an output control signal. A generator converts the stored energy of the spring system into electric power. A spring recharge module recharges the stored energy of the spring system in response to a recharge control signal. A control module generates the recharge control signal and the output control signal, based on the monitor signal.
Owner:CRIPTONIC ENERGY SOLUTIONS

Ground source heat pump well field design and control strategy for large tonnage

The present invention features geothermal systems that use of a well field open loop scheme by interconnecting the well field through a system of mains and controlled branches, the latter composed of multiple (2-5) wells. The proposed design lends itself to the use of modular well field kits that minimize installation cost, insures equal return water distribution to the active wells, creates standardization and insures best practices. The benefits of individual branch control include the ability to serve the building load in staged delivery, thereby minimizing well field parasitic load, and maximizing the time available for well field thermal relaxation and availability.
Owner:AMERICAN REFINING GRP

Ground source heat pump field design with improved control strategies

The present invention features geothermal systems with improved control strategies for efficient operation of multiple geothermal wells. In many embodiments, each well in a geothermal system of the present invention is operated in cycles. Each cycle includes a heat exchange phase followed by a thermal recovery phase. During a heat exchange phase, the well is engaged in exchanging heat with a heat pump. During a thermal recovery phase, the well is kept inactive for establishing thermal equilibrium with the earth. On many occasions, the geothermal system simultaneously operates a group of wells in a heat exchange phase to serve the building HVAC load, while maintaining other wells inactive for thermal recovery. The switching between different operational stages is regulated for each well to improve the overall performance of the system while satisfying the building demand.
Owner:GEOTHERMAL DESIGN GROUP

Self-sustaining on-site production of electricity and/or steam for use in the in situ processing of oil shale and/or oil sands

InactiveUS20080116694A1Minimizes “ freeze wall ” energy requirementMinimization requirementsFrom solar energyInsulationThermal energyElectricity
Oil shale and / or oil sands are utilized to generate electricity and / or steam at the site of the oil shale / sands deposit in an in situ process for recovering oil from the deposit. Bulk shale / sands material is removed from the deposit and combusted to generate thermal energy. The thermal energy is utilized to heat water to generate steam. The steam can be used directly in the in situ process or utilized to drive a steam turbine power generator located in close proximity to the deposit to generate electricity. The electricity generated on-site may be utilized to drive an in situ conversion process that recovers oil from the oil shale / sands deposit. Also, the exit steam generated by the on-site turbine generator can be used on-site to drive the in-situ conversion process.
Owner:STONE QUARRY

Control system to manage and optimize a geothermal electric generation system from one or more wells that individually produce heat

A control system manages and optimizes a geothermal electric generation system from one or more wells that individually produce heat. The control system includes heat sensors that measure temperature and fluid flow and are placed at critical points in the wells, in piping, in a hot fluid reservoir, in a cold fluid reservoir and in a cooling system. The control system also includes pump and valve controls, generator controls, a network for gathering information and delivering instructions, and a processing module that collects information and communicates control information to each component.
Owner:PARDEV

S-CO2 power generation system and method for developing geothermal energy of hot dry rock based on finned casing pipe

The invention discloses an S-CO2 power generation system and method for developing geothermal energy of hot dry rock based on a finned casing pipe. The finned casing pipe is a coaxial casing pipe, andthe system is composed of an outer-layer descending pipe segment, an outer-layer enhanced heat exchanging pipe segment, an inner backflow pipe, an S-CO2 gas turbine, a power generator, a compressor and the like. According to the innovation point of the S-CO2 power generation system and method for developing the geothermal energy of the hot dry rock based on the finned casing pipe, by means of closed-loop circulation of S-CO2 in the finned casing pipe, the geothermal energy is transmitted to the gas turbine from a hot dry rock layer; the finned casing pipe and the gas turbine both adopt the S-CO2 as circulating work media, and the heat exchanger end difference is eliminated; and fins are added outside a hot dry rock segment, the heat transfer area is increased, and the single well output is improved. The S-CO2 flows to the bottom of a heat taking well from the outer layer of a heat taking casing pipe to be collected to the inner layer, the geothermal energy in the hot dry rock is absorbed in the descending process, temperature ceaselessly rises, the S-CO2 then flows back to the ground from the inner layer, and the geothermal energy is converted into high-grade electric energy through the S-CO2 gas turbine and the power generator. After being detected by a work medium detecting unit and pressurized by the compressor, the S-CO2 starts new circulating, and sustainable exploitationof the geothermal energy of the hot dry rock is achieved.
Owner:XI AN JIAOTONG UNIV

Closed loop energy production from producing geothermal wells

Methods and systems for producing thermal or electrical power from geothermal wells. Power is produced from a working fluid circulating in a closed loop within a geothermal well. Geothermal steam or brine at depth transfers heat at higher temperature than at the surface to the working fluid. The working fluid is then used to produce power directly or indirectly. The geothermal production fluid may be stimulated through use of gas lifting or submersible pumps to assist in bringing such fluids to the surface or through the use blockers to encourage the downhole steam advection and brine recirculation through the resource in a connective loop. The working fluid may be compatible with existing direct heat or power generation equipment; i.e., water for flash plants or hydrocarbons / refrigerants for binary plants.
Owner:GREENFIRE ENERGY

Deep coal and terrestrial heat cooperation mining equipment and method

Disclosed are deep coal and terrestrial heat cooperation mining equipment and a method. The equipment comprises a terrestrial heat mining ground system, a terrestrial heat mining underground system, acoal mining system and a filling mining system. The method comprises the steps that a filling coal face is arranged according to a coal seam condition to form a mining system body and a filling system body; a goaf is filled with a heat absorbing, heat storage and normally paste-like filling material, heat mining pipes are laid in the heat absorbing and heat storage filling body, and a heat absorbing belt and a heat insulating belt are formed; and a cold fluid is injected from the ground into the working face for replacing the stored heat in the filling body to form a hot fluid, and the hot fluid is conveyed to the ground for power generation utilization. According to the deep coal and terrestrial heat cooperation mining equipment and the method, cooperation of deep filling and terrestrialheat mining is achieved, the temperature of the working face is decreased, and meanwhile, rationalization development and utilization of resources are enhanced.
Owner:CHINA UNIV OF MINING & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products