Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

326 results about "Catalytic burner" patented technology

Steam generator for a PEM fuel cell power plant

A burner assembly includes a catalyzed burner for combusting an anode exhaust stream from a polymer electrolyte membrane (PEM) fuel cell power plant. The catalysts coated onto the burner can be platinum, rhodium, or mixtures thereof. The burner includes open cells which are formed by a lattice, which cells communicate with each other throughout the entire catalyzed burner. Heat produced by combustion of hydrogen in the anode exhaust stream is used to produce steam for use in a steam reformer in the PEM fuel cell assembly. The catalyzed burner has a high surface area wherein about 70-90% of the volume of the burner is preferably open cells, and the burner has a low pressure drop of about two to three inches water from the anode exhaust stream inlet to the anode exhaust stream outlet . The burner assembly operates at essentially ambient pressure and at a temperature of up to about 1,700° F. (646° C.). The burner assembly can combust anode exhaust during normal operation of the fuel cell assembly. The burner assembly also includes an adjunct burner which can combust gasoline or anode bypass gas (the latter of which is a reformed fuel gas which is tapped off of the fuel cell stack fuel inlet line) during startup of the fuel cell power plant. Once start up of the fuel cell power plant is achieved, the burner assembly will need only combustion of the anode exhaust by the catalytic burner to produce steam for the reformer.
Owner:BALLARD POWER SYSTEMS

Process and apparatus for control of NOx in catalytic combustion systems

Methods and apparatus for control of NOX in catalytic combustion systems, and more particularly to control of thermal or/and prompt NOX produced during combustion of liquid or gaseous fuels in the combustor sections of catalytic combustor-type gas turbines, by controlled injection of water in liquid or vapor form at selected locations, orientations, amounts, rates, temperatures, phases, forms and manners in the compressor and combustor sections of gas turbines. The ratio of thermal NOX ppm reduction to water addition, in weight %, is on the order of 4-20, with % NOX reduction on the order of up to about 50-80% and NOX of below 2 ppm. Liquid water, steam or superheated steam can be used to reduce NOX in combustion systems operating at reaction zone temperatures above 900° C., preferably 1400° C. to 1700° C. The amount of water added is sufficient to provide a concentration of water in the range of from about 0.1% to about 20% by weight of the total air and fuel mixture flowing into the post catalyst reaction zone. Water is introduced simultaneously or sequentially in a plurality of locations, at selected rates, amounts, temperatures, forms, and purity, preferably in accord with a suitable control algorithm.
Owner:KAWASAKI HEAVY IND LTD

Online high-purity hydrogen preparation system for fuel cell and control method of online high-purity hydrogen preparation system

The invention discloses an online high-purity hydrogen preparation system for a fuel cell. The online high-purity hydrogen preparation system comprises a methyl alcohol box as well as a raw material box and a catalytic burner which are connected with the methyl alcohol box through a methyl alcohol metering pump, wherein a fuel cell discharge water inlet is formed in the raw material box, an oxygen inlet is formed in the catalytic burner, an ethanol water metering pump and a heat exchanger are sequentially connected onto the raw material box, a vaporizer is connected onto the heat exchanger, a reforming reactor is connected onto the vaporizer, a palladium film purifier is connected onto the reforming reactor, and the palladium film purifier is connected with the catalytic burner; the invention further discloses a control method of the system. According to the system provided by the invention, online hydrogen supplying is performed through a manner of using a methanol water reforming reaction to produce hydrogen, the yield of pure hydrogen is controlled through adjusting the flow of an ethanol water mixture; the method has the characteristics of high hydrogen storage density, high hydrogen purity, low energy consumption, compact structure, simpleness and convenience in start-stop controlling, easiness in implementing modular design and the like.
Owner:武汉氢能与燃料电池产业技术研究院有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products