Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1928 results about "Graphite crucible" patented technology

Purification apparatus and method for solar energy level polysilicon

Disclosed are a purification device as well as a purification method of solar-grade polysilicon, relating to a polysilicon, which provides a purification device and a purification method of solar-grade polysilicon characterized by low cost, high purity, simple process, easy operation and suitability for large-scale production. The purification device is equipped with a vacuum system, a melting system and a directional solidification system; wherein the vacuum system is provided with a mechanical rotary vane pump, a lobed element pump and an oil diffusion pump, and the melting system is provided with a vacuum chamber, a secondary feeder, an observation window, a rotary ventilation device which can be raised and lowered, an induction coil and a graphite crucible; and the directional solidification system is disposed at the lower part of the vacuum chamber and is equipped with an electric resistance-wire heating and holding furnace, a graphite mold, a holding furnace frame, a water-cooled copper tray and an elevating lever which can control speed. The metal silicon is treated by induction heating to be molten, the oxidizing gas is fed under conditions of low vacuum and high temperature to remove boron, and then under conditions of high temperature and high vacuum to remove phosphorus, and finally the molten silicon solution is poured into a directional mold to strictly conduct directional solidification to remove metal impurities.
Owner:XIAMEN UNIV

Electric locomotive pantograph copper-soaking carbon contact strip producing method

The invention discloses an electric locomotive pantograph copper-impregnated carbon contact strip producing method. The method comprises the steps that 1, pitch coke powder, graphite powder, siliconized graphite powder and high temperature pitch are mixed according to the proportion to be ground into powder; the mixed powder is prepressed into a stage stock column, and then the stage stock column is solidified and squeezed to be molded and roasted, so that a composite carbon contact strip is obtained; 2, the composite carbon contact strip is cleaned and dried, then is cooled and placed into a graphite crucible, and is placed in an electric furnace at temperature of 1300-1400 DEG C to be preheated; copper liquid is poured into the crucible to soak the composite carbon contact strip, then the crucible is placed in an oil press cover, nitrogen is led in, heat preservation is kept for 3-5 min under the specific intensity of pressure, and finally cooling is carried after pressure releasing. According to the electric locomotive pantograph copper-impregnated carbon contact strip producing method, the electroconductibility of the copper-impregnated carbon contact strip is improved, the electrical resistivity is lowered, the mechanical strength of the carbon contact strip and copper impregnated angle can be increased, then the carbon contact strip abrasive resistance and self-lubrication are improved, the copper-impregnated carbon contact strip is more resistant to abrasion, main line damage and block dropping are avoided, the shock resistance is high, and the service life of the copper-impregnated carbon contact strip is prolonged.
Owner:SICHUAN UNIVERSITY OF SCIENCE AND ENGINEERING

Graphite matrix flawless TaC coating and manufacturing method thereof

InactiveCN101445392AImprove corrosion resistanceImprove diffusion resistanceGraphite substrateThermal stability
The invention discloses a graphite matrix flawless TaC coating and a manufacturing method thereof. A tie coat is deposited on a graphite matrix. A TaC main coating is deposited on the outer layer of the tie coat. The tie coat is composed of a SiC-TaC codeposition coating or compounded by two transition layers of the SiC-TaC codeposition coating and a SiC-TaC laminated coating. When the tie coat is compounded by two transition layers of the SiC-TaC codeposition coating and the SiC-TaC laminated coating, the SiC-TaC codeposition coating serves as a first transition layer, and the SiC-TaC laminated coating serves as a second transition layer; and then the deposition of the tie coat is ended; or the SiC-TaC codeposition coating and the SiC-TaC laminated coating are alternatively deposited many times. Good TaC coating which has small heat stress, no macroscopic cracking, corrosion-resistance, and good thermal stability is deposited out of the surface of the graphite material. The method is suitable for preparing graphite substrate, graphite crucible, graphite windpipe, graphite guide shell coating in the crystal and semiconductor production, protecting and cleaning coating such as antisepsis, anti-pollution, anti-infiltration, anti-oxidation of graphite parts in other various hot environments.
Owner:CENT SOUTH UNIV

Additive for smelting aluminium alloy and preparation method and application method thereof

The invention relates to an additive for smelting aluminium alloy and a preparation method and an application method thereof, relating to the technical field of nonferrous alloy manufacturing with a special additive. The additive is composed of metal powder, cosolvent, heat-generating agent, detonating agent and moisture proof agent. The preparation method comprises the following steps: raw materials comprising the following by mass percentage, 70-81.5% of metal powder, 15-20% of cosolvent, 2-5% of heat-generating agent, 1-3% of detonating agent and 0.5-2% of moisture proof agent, are fully mixed evenly into compound powder with a ball mill, and the mixture is put into a mould, and is performed with cold pressing by a hydraulic pressure machine so as to obtain the additive for smelting aluminium alloy. The application method of the invention comprises the following steps: a graphite crucible filled with a pure aluminium pig is arranged in a resistance furnace to be heated until the aluminium pig is melted into aluminium liquid, and then the additive is added to react with the aluminium liquid so as to obtain aluminium alloy. Under the condition that the quality of aluminium alloy is not lowered, the additive solves the problems of high dissolving temperature, low absorptivity and unstable absorptivity of the additive.
Owner:HEBEI UNIV OF TECH

Preparation method of low-stress and high-purity semi-insulating SiC single crystal

The invention relates to a preparation method of a low-stress and high-purity semi-insulating SiC single crystal. The method includes the steps that synthesis of high-purity SiC powder is carried out, crystal growth is carried out with a physical vapor transport method, the concentration of shallow energy level impurities is reduced in the synthesis and crystal growth processes, a heat insulation material is subjected to high-temperature pretreatment, and boron impurities are prevented from being blended in; a silicon powder raw material and a carbon powder raw material are put into a graphite crucible with a coating for SiC synthesis; the obtained high-purity SiC powder is pretreated, seed crystals are fed, vacuumizing is carried out, high-purity argon or mixed gas of argon and hydrogen is introduced in to carry out crystal growth, then the temperature is rapidly lowered to enlarge point defects, and then the temperature is slowly lowered to the room temperature to eliminate stress. SiC crystal growth is carried out in an equilibrium state, so that the obtained crystal is small in stress, low in microtubule density and good in quality, and the resistivity on the area of the whole crystal is 108 ohm.cm or above. The method is small in preparation investment, high in safety and free of pollution.
Owner:SHANDONG UNIV

Al-Si-Cu-Zn-Sn-Ni aluminum-based brazing filler metal and preparation method thereof

The invention relates to an Al-Si-Cu-Zn-Sn-Ni aluminum-based brazing filler metal and a preparation method thereof. The components of the aluminum-based brazing filler metal are 7 to 13 percent by weight of Si, 5 to 11 percent by weight of Cu, 4 to 11 percent by weight of Zn, 1 to 6 percent by weight of Sn, 1 to 3 percent by weight of Ni, 0.02 to 0.3 percent by weight of Ce, 0.01 to 0.1 percent by weight of Sr, 0.01 to 0.2 percent by weight of Zr and the balance of Al. The process flow for preparing the aluminum-based brazing filler metal is that: pure aluminum is added into a graphite crucible and covered by flux for aluminum under the condition of 800 DEG C to 900 DEG C, and slag is removed after melting; the aluminum-based intermediate alloy of high-melting point elements and flux for aluminum are added at the same time, and melting, stirring and slag removal are carried out; the aluminum-based intermediate alloy of low-melting point elements is added under the protection of nitrogen, and melting and stirring are carried out; the mixture of argon and hexachloroethane is added to carry out refining, and standing and slag removal are carried out; the intermediate alloy of trace elements is added, and melting and stirring are carried out; secondary refining and slag removal are carried out; and under the protection of nitrogen, casting formation is carried out. The Al-Si-Cu-Zn-Sn-Ni aluminum-based brazing filler metal has the advantages of low melting point, high strength, high toughness, high corrosion-resistant property and good wetting property and spreadability.
Owner:GUILIN QINGTONG NON FERROUS METAL ARTS & CRAFTS MATERIAL DEV CO LTD

Silicon carbide based reinforced composite ceramic and preparation

The invention discloses a reinforced silicon carbide-based composite ceramic and a preparation method thereof. The composite ceramic is characterized by comprising the following components based on weight percentages: 30%-40% of silicon carbide powder, 5%-17% of boron carbide powder, 9%-12% of nano carbon black and 40%-50% of silicon metal. The method comprises the following steps: firstly, ball milling and wet mixing are performed on the silicon carbide powder, the carbon black and the boron carbide powder to obtain mixed powder, and a bonding agent PVB is added for granulation, die pressing is performed for forming; then the formed green compact is dried and put in an air furnace for binder removal; and finally, the obtained green compact is put into a graphite crucible with silicon powder, and siliconizing and sintering are completed after 1-3h heat preservation at 1450-1550 DEG C under a vacuum environment, thus obtaining a sintering body. The boron carbide particle reinforced reaction sintered silicon carbide composite ceramic prepared by the method can be widely used as a structural material under high-temperature atmosphere and corrosive atmosphere, a frictional wear material and the like; and as the composite ceramic has better obdurability and hardness, the ceramic can be used as a substitute material of the traditional reaction sintered silicon carbide.
Owner:珠海亿特立新材料有限公司

Preparation technology of carbon/carbon composite material crucible for monocrystalline silicon furnace

The invention discloses a preparation technology of a carbon / carbon composite material crucible for a monocrystalline silicon furnace, and the preparation technology comprises the following steps of: adopting a polyacrylonitrile nitrile base carbon fiber-woven performing body, taking mixed gas of natural gas, propylene, liquefied petroleum as a carbon source and nitrogen or argon as carrier gas, in a uniform temperature thermal field formed by a vertical pot type deposition furnace, timely switching the upper gas charging and lower gas charging of a pipeline, due to the pressure difference of the gas inside and outside the crucible, and in combination with a uniform temperature method, a differential-pressure method and a compulsive gas current method, realizing the quick densifying of the whole crucible blank body, wherein after 300-350 hours, the intensity of the crucible can reach to more than 1.6g / cm<3>, compared with the conventional free deposition technology, the preparation technology can be used for greatly shortening the deposition time, and reduces the production cost. After being mechanically machined, the crucible is used for a thermal field of the monocrystalline silicon furnace, compared with the hot isostatic pressure graphite crucible, the carbon / carbon composite material crucible has the advantages that the service life is prolonged by 3-5 times, the cost performance is obviously better than that of the graphite crucible, and the production cost and labor intensity of the monocrystalline silicon are greatly reduced.
Owner:保定顺天新材料股份有限公司

Method for removing phosphorus and boron from metallurgical-grade silicon

The invention provides a method for removing phosphorus and boron from metallurgical-grade silicon, which relates to the purification of metallurgical-grade industrial silicon. The provided method for removing the phosphorus and the boron from the metallurgical-grade silicon has the advantages of less investment, lower production cost, less environmental pollution and the like. The method comprises the following steps of: putting a bulk silicon material into a smelting furnace; smelting the bulk silicon material, and covering the bulk silicon material with a slag former to obtain a silicon block mixture; vacuumizing the smelting furnace until the pressure is between 800 and 1,200 Pa, and charging argon until the pressure is between 8,000 to 12,000 Pa; heating the silicon block mixture to be melted, introducing water vapor, pouring a melted mixture on a loading graphite crucible below a smelting crucible, and taking out the silicon material after being cooled; crushing and milling the silicon material after slag forming to obtain silicon powder; soaking the powdered silicon in hydrochloric acid; soaking the silicon powder after being soaked in the hydrochloric acid in dilute aqua regia; and soaking the silicon powder after being soaked in the dilute aqua regia in hydrofluoric acid to obtain the metallurgical-grade silicon without the phosphorus and the boron.
Owner:XIAMEN UNIV

Czochralski silicon monocrystal growth furnace and method for filling silicon melts continuously

The invention discloses a czochralski silicon monocrystal growth furnace and a method for filling silicon melts continuously. In the czochralski silicon monocrystal growth furnace, a monocrystal lifting part comprises a lifting head, a slave furnace chamber, an isolating valve, a furnace body, an upper part heat-preserving cover, a heater, a crucible lifting rotary mechanism, a graphite crucible, a crucible, a steel wire rope, a chuck and the like; a melt continuously-filled part comprises a small furnace cylinder, a charging bin, the isolating valve, a charging and weighing device, a continuously-melted tube, a heat-insulating body, the heater, a melt temperature stabilizing tube and the like; and by the czochralski silicon monocrystal growth furnace, the continuous melting of polycrystalline silicon and the continuous growth of silicon monocrystal are realized. In the czochralski silicon monocrystal growth furnace, a spacing interval of opening a mono-crystal furnace for two times adjacently can be prolonged by over 30 days, the size of the crucible can be reduced effectively, the consumption and oxygen content of the czochralski silicon monocrystal growth method can be reduced effectively, and the production efficiency can be improved.
Owner:曾泽斌

Preparation method of zirconium diboride ceramic with in-situ-introduced boron as additive

InactiveCN103011827AAvoid introducingGood for maintaining excellent performanceArgon atmosphereZirconium dioxide
The invention relates to the field of structural ceramic manufacturing, in particular to a preparation method of zirconium diboride ceramic with in-situ-introduced boron as an additive. The preparation method comprises the following steps: firstly, performing ball milling and mixing zirconium dioxide and elemental boron in a mol ratio of (1: 3.5)-(1: 4.5), and drying to obtain ZrO2/ B mixed powder; secondly, putting the ZrO2/ B mixed powder into a graphite crucible, and performing high-heat treatment at the air pressure of below 200Pa to obtain ZrB2/ B powder; and finally, sieving the obtained ZrB2/ B powder, performing isostatic pressing, putting the ZrB2/ B powder into the graphite crucible, performing pressureless sintering in an argon atmosphere, controlling the sintering temperature at 1800 -2100 DEG C, the heat-preserving time at 1-3 hours and the heating rate at 10-50 DEG C/ min, and preserving heat for 0.5 hours at 1500-1700 DEG C to obtain the compact zirconium diboride ceramic. By the preparation method, a ball milling medium is not introduced, the impurity content is reduced, excellent performance of the zirconium diboride ceramic can be maintained easily, and the sintering compactness of the zirconium diboride ceramic is realized at a relatively low temperature (2000 DEG C).
Owner:FUDAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products