Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

814 results about "Mimo radar" patented technology

Target angle of arrival estimation method for mimo radar

The invention discloses a method for estimating target arrival angle of a multiple input multiple output (MIMO) radar, which mainly solves the problem of large signal processing capacity in the target positioning process of MIMI radar. The method comprises the following steps of: 1) obtaining a virtual array of echo of each receiving antenna by a matched filter bank; 2) constructing a data conversion matrix and a dimension reduction array according to position of transmitting and receiving array; (3) reducing dimension of the virtual array data by the dimension reduction array to obtain an effective array after dimension reduction; 4) constructing two sub-arrays by rotational variance of effective array, and deriving covariance matrix of data; 5) decomposing eigenvalue of covariance matrix to obtain signal sub-spaces corresponding to two sub-arrays; 6) deriving rotational invariant relationship matrix by least square method to obtain arrival angle of target. The dimension reduction matrix form constructed by the method has versatility; the computation quantity is reduced by the dimension reduction of data and the ESPRIT (estimating signal parameter via rotational invariance techniques) algorithm; the computation speed of MIMO radar is increased; and the real-time signal processing of the MIMO radar is made easier.
Owner:XIAN CETC XIDIAN UNIV RADAR TECH COLLABORATIVE INNOVATION INST CO LTD

A low-sidelobe emission directional diagram design method improving DOA estimated performance of a MIMO radar

ActiveCN105467365AVector number reductionGuaranteed approximationWave based measurement systemsEngineeringRandomization
The invention relates to a low-sidelobe emission directional diagram design method improving DOA estimated performance of a MIMO radar. The method comprises the following steps: setting an interesting area; ensuring column vectors of a beam space weighting matrix to satisfy pairing characteristics; ensuring signals at a receiving end to satisfy rotation invariance; constructing an optimized model of a beam space weighting matrix with directional diagram coupling characteristics, rotation invariance of the signals and equality of various array element emission powers as constraint conditions; introducing an auxiliary variable and relaxing a rank-1 constraint to be a positive semidefinite constraint through utilization of the semidefinite relaxing technology; and through utilization of an interior point method, obtaining an optimal solution of the relaxing problem; through a Gaussian randomization method, the beam space weighting matrix is solved; and DOA estimation is carried out on a target at the receiving end through the ESPRIT algorithm. The MIMO radar waveform design technology which is good in performance in the invention can raise the signal to noise ratio at the receiving end, provide an important theoretical basis and a specific realization method for raising the precision of MIMO radar angle estimation.
Owner:THE PLA INFORMATION ENG UNIV

Integral coding/decoding method based on MIMO radar communication

The invention provides an integral coding / decoding method based on MIMO radar communication. The orthogonal spread spectrum code sequence guarantees the orthogonality of bipolar phase spread spectrum code sequence based on WalsH matrix. The requirement of the radar to the detection of signal self-correlation peak value, mutual correlation peak value low side-lobe can be satisfied through the genetic algorithm. The signal encoding is based on soft spread spectrum biorthogonal encoding. To satisfy the requirement of the MIMO radar to detection signal, different spreading coding sequences can be used on different encode element positions; special sending channel can be reserved as the time and frequency synchronous standard, the first encode element position of each sending channel is reserved as the phase position standard, and special synchronous spreading codes are used on the positions. According to the method provided by the invention, conventional carrier frequency offset extraction technology, carrier phase partial extraction technology and soft spread spectrum biorthogonal decoding method are improved specifically according to the requirement of the radar / radio frequency integrate realization, accompanied by the frequency offset tracking technology with Alpha -Beta as the core, accuracy of data deviation correction is guaranteed.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

Method for designing MIMO radar waveforms

ActiveCN103592642AGood Doppler toleranceReduce the degree of pulse integration processing mismatchRadio wave reradiation/reflectionRadarEnergy functional
The invention discloses a method for designing MIMO radar waveforms. The method mainly solves the problem in the prior art that tolerance of Doppler is poor in the process of waveform design. The implementation steps of the method include the first step of fixing a set of waveform center frequency sequences of a radar and setting an initial phase to be zero, the second step of searching a frequency interval initial variable to find out a frequency interval initial value which satisfies the requirement that the 3dB bandwidth of an emitted energy function equals to the 3dB bandwidth of an ideal emitted energy function, the third step of setting a frequency interval according to the frequency interval initial value, the fourth step of inputting the frequency interval and the initial phase and outputting an emitted energy function difference value, emitting direction sidelobe gain and the sidelobe magnitude of signals after pulse synthesis to construct a cost function, the fifth step of calling the cost function and optimizing the cost function through the minimax method to obtain the frequency interval and the initial phase meeting the requirement, and the sixth step of obtaining a set of final signals according to the frequency interval and the initial phase and completing the design of the waveforms. The waveforms designed through the method have the advantages of being good in the tolerance of the Doppler and applicable to target detection.
Owner:XIDIAN UNIV

Iterative least square method-based MIMO (multiple input multiple output) radar DOA (direction-of-arrival) estimation method

The invention discloses an iterative least square method-based MIMO (multiple input multiple output) radar DOA (direction-of-arrival) estimation method, which is characterized in that receiving and transmitting array response matrixes on which dimension-reduced processing is performed are solved by using an iterative least square method. The iterative least square method-based MIMO radar DOA estimation method comprises the following steps: firstly, performing the dimension-reduced processing on echo data matrixes of multiple radar transmitted pulses and the receiving and transmitting array response matrixes; then, establishing cost functions under the least square condition, and solving the cost functions by utilizing a gradient descent-based iterative method; finally, estimating the direction of a target by utilizing known receiving and transmitting array manifolds. Compared with a traditional monostatic MIMO radar array DOA estimation method, the iterative least square method-based MIMO radar DOA estimation method disclosed by the invention directly obtains the DOA estimation of the target, and does not need to perform spectrum peak search. Noise is effectively suppressed by adopting the dimension-reduced processing, and the estimation accuracy under low signal to noise ratio is improved; the estimation, the inversion and the eigenvalue decomposition operation of high-dimensional data covariance matrixes are avoided; the defects that the calculated amount is high and the needed sample number is large when the traditional array DOA estimation method is applied to a monostatic MIMO radar are overcome.
Owner:XIDIAN UNIV

Microwave photon MIMO radar detection method and microwave photon MIMO radar system

The invention discloses a microwave photon MIMO radar detection method comprising modulating M intermediate-frequency linear frequency-modulated signals with the same bandwidth and chirp rate and non-overlapped frequency on M optical carriers with different wavelengths to generate M optical signals where only the positive and negative second-order sidebands are retained; merging the M optical signals by an optical wavelength division multiplexer and then dividing a combined optical signal into two channels; dividing the optical signal in one channel into N reference light beams; subjecting theoptical signal in the other channel to photoelectric conversion and separating and transmitting M orthogonal linear frequency-modulated signals therein; receiving, by N receiving antennas, the targetreflected signals, performing de-chirp processing and wavelength demultiplexing, and subjecting the obtained M optical signals to photoelectric conversion, low-pass filtering and analog-to-digital conversion to obtain M*N digital signals, processing the digital signals to obtain a target detection result. The invention also discloses a microwave photon MIMO radar system. The method can greatly improve the range resolution and azimuth resolution of the radar system.
Owner:NANJING UNIV OF AERONAUTICS & ASTRONAUTICS

Distributed MIMO radar target tracking accuracy joint resource optimization method

The invention relates to a distributed MIMO radar target tracking accuracy joint resource optimization method. The method includes the following steps that: an objective function is derived, a resource allocation optimization model containing three variables, namely, array element, power and bandwidth is constructed; the model is simplified, an array element selection problem is converted into a convex optimization problem from a 0-1 problem through convex relaxation; and the optimization model is decomposed into iterative optimization sub-problems of array element selection and power allocation through using cyclic minimization, the problems are solved through using an SPCA (sequential parametric convex approximation) method until the objective function is not optimized any more, final array element selection and power allocation results are obtained, and a final bandwidth allocation result is calculated, and a target position at a next time point is estimated. According to the distributed MIMO radar target tracking accuracy joint resource optimization method of the invention, the accuracy of the target tracking of an MIMO radar can be effectively improved through resource allocation, and the utilization rate of resources can be also improved; and an appropriate array element subset is selected, and power and bandwidth resources are allocated optimally, and therefore, the accuracy of the target tracking can be further improved under a situation that radar system resources are limited.
Owner:THE PLA INFORMATION ENG UNIV

Multiple-input-multiple-output radar waveform design method

A multiple-input-multiple-output radar waveform design method belongs to the radar communication technical field, and aims to provide a design method with lower related sidelobe and frequency spectrum inhibition depth, high efficiency, less consumption, high robustness, and excellent time frequency anti-interference performance; the method comprises the following steps: pre-evaluating an autocorrelation sidelobe inhibition fuzzy region according to a relative position between a strong scatterer and a to be measured object in a radar scene, thus forming a corresponding object function; analyzing MIMO radar waveform orthogonality constraint so as to form the object function satisfying the orthogonality constraint; pre-evaluating a frequency domain interference fuzzy frequency band zone according to scene prior information, thus forming the corresponding object function; forming a constant modulus phase coding waveform constrained condition; forming a loose alternative projection algorithm framework; solving a waveform design according to the loose alternative projection algorithm framework, thus providing three waveform optimization output modes. The loose alternative projection constant modulus waveform coding design enables the MIMO radar to have batter detection performance.
Owner:HARBIN INST OF TECH +1

Multi-parameter combined estimation method based on bi-static FDA-MIMO radars

The invention relates to a multi-parameter combined estimation method based on bi-static FDA-MIMO radars. The method comprises the following steps: firstly designing a transmitting signal by utilizing characteristics of FDA and MIMO radars; carrying out matched filtering, vectorization and spatial smooth processing on a receiving signal; then estimating a combined steering vector and estimating a DOA and a speed parameter by utilizing an ESPRIT algorithm, and carrying out decoupling and parameter estimation on the DOD and distance information by combining characteristics of a transmitting waveform; and carrying out ambiguity resolution on a distance result estimated by utilizing an ESPRIT algorithm and combining a distance estimated by virtue of a pulse delay estimation algorithm, and carrying out ambiguity resolution on a speed by virtue of an MUSIC algorithm by combining signal characteristics of a large number of pulses. The method provided by the invention has the advantages that the problem that the distance and speed can not be accurately estimated under the condition of a single PRF can be effectively solved, and the estimation of the three-dimensional position and speed of a target can be realized; and a simulation result shows that the method provided by the invention has good estimation accuracy and stability.
Owner:THE PLA INFORMATION ENG UNIV

Waveform optimized design method for frequency controlled array MIMO radar system

The invention discloses a waveform optimized design method for a frequency controlled array MIMO radar system, aiming to solve the problem that too much test data is to be processed for obtaining distance, angle, and resolution of high dimension Doppler. The implementation process is: 1) according to the target environment requirement, determining the transmitting carrier frequency, frequency increment, antenna quantity, and waveform code element length of the frequency controlled array MIMO radar; 2) according to a received data model, constructing decoupling between transmitted waveforms and virtual steering vectors; 3) according to a constructed data matrix, determining the coherence of the data matrix; 4) according to the coherent characteristics of matrix completion, designing transmitting waveform of the frequency controlled array MIMO radar by use of optimized method. By use of the method, through the transmitting waveform design for the frequency controlled array MIMO radar, the coherence of the received data is made as low as possible. Therefore, the method has an advantage that smaller data quantity is needed when accurate target detection and estimation are obtained; the method can be applied in frequency controlled array MIMO radar waveform design.
Owner:HUBEI UNIV OF TECH

Local-area joint-dimension-reduction range ambiguity clutter suppression method based on FDA-MIMO radar

The invention discloses a local-area joint-dimension-reduction range ambiguity clutter suppression method based on an FDA-MIMO radar so that problems that the existing range ambiguity clutter suppression method has the poor detection performance, the operation load is high, and the requirement on the independent and identically distributed samples is high can be solved. The method comprises: stepone, carrying out matching and filtering on echo data of a radar by using a transmitting waveform; step two, carrying out range dependence compensation on the matched filtered data; step three, constructing a local-area joint dimension reduction matrix and performing dimension reduction on the received data; step three, on the basis of data after dimension reduction, estimating a clutter covariance matrix; step four, on the basis of a minimum variance, non-distortion response to a wave beam forming device is carried out to obtain an optimal weight vector; step five, carrying out weighting on the data after dimension reduction by using an optimal weight, suppressing a range ambiguity clutter, and detecting a target signal. Compared with the existing range ambiguity clutter suppression method, the provided method has the following advantages: the computing complexity is low; the requirement on the independent and identically distributed samples is low; and the clutter suppression performance is good. The range ambiguity clutter suppression on an airborne radar is realized. The method can be applied to ground moving target detection of an airborne radar.
Owner:XIDIAN UNIV

Method for designing loop-optimization-based emission beam matrix in FDA-MIMO radar

The invention provides a method for designing a loop-optimization-based emission beam matrix in a FDA-MIMO radar. The method is characterized in that the feature that when a small frequency increment is added to a frequency control matrix through adjacent matrix elements, emission beams with angles and distance dependence can be produced, and possibility is provided for the angle and distance parameter combined positioning of a target is utilized to combine with the frequency control matrix and an MIMO radar, and combined estimation of the distances and angles of multiple targets is achieved by optimally designing the emission beam matrix. The method specifically includes: determining emission carrier waves, the frequency increment and emission receiving antenna number according to actual needs and the features of a frequency control matrix MIMO radar system, and building a frequency control matrix MIMO radar system model; using a loop optimization method to design the emission beam matrix of the radar; verifying the performance of estimated distances, angles and amplitudes on the basis of the emission beam matrix. The method is essentially a method minimizing the mutual coherence principle of a perception matrix in a thinning model to increase distance and angle-dimension resolution.
Owner:HUBEI UNIV OF TECH

Receiving-transmitting type robust dimensionality-reducing self-adaptive beam forming method of coherent MIMO (Multiple Input Multiple Output) radar

The invention discloses a receiving-transmitting type robust dimensionality-reducing self-adaptive beam forming method of coherent MIMO (Multiple Input Multiple Output) radar. The receiving-transmitting type robust dimensionality-reducing self-adaptive beam forming method comprises the following steps: firstly, separating a transmitting-receiving two-dimensional weight vector in the coherent MIMO radar into a transmitting weight vector and a receiving weight vector to realize dimensionality reduction; then utilizing a two-order convex optimization algorithm to deduce a double-secondary cost function and a constraint condition based on a bilateral guiding vector error model; calculating an optimal weight vector needed by beam forming by using a double iteration method; and finally, robustly realizing self-adaptive beam forming by using the optimal weight vector. According to the receiving-transmitting type robust dimensionality-reducing self-adaptive beam forming method, the disadvantages that a very great sample quantity and a great calculation quantity are needed when a traditional self-adaptive beam forming method is applied to the coherent MIMO radar are overcome. Compared with the traditional self-adaptive beam forming method, the needed sample quantity and calculation quantity are reduced to the great extent, the convergence speed is improved greatly and the robustness is very good.
Owner:XIDIAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products