Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

260results about How to "Eliminate aberrations" patented technology

Apparatus and methods for removing optical abberations during an optical inspection

Disclosed are methods and apparatus for altering the phase and/or amplitude of an optical beam within an inspection system using one or more spatial light modulator(s) (SLMs). In one embodiment, an apparatus for optically inspecting a sample with an optical beam is disclosed. The apparatus includes a beam generator for directing an incident optical beam onto the sample whereby at least a first portion of the incident optical beam is directed from the sample as an output beam and a detector positioned to receive at least a portion of the output beam. The detector is also operable to generate an output signal based on the output beam. The apparatus further includes one or more imaging optics for directing the output beam to the detector and a programmable spatial light modulator (SLM) positioned within an optical path of the incident or output beam. The SLM is configurable to adjust a phase and/or amplitude profile of the incident beam or the output beam. The apparatus also has a control system operable to configure the SLM to alter the phase and/or amplitude profile of the incident beam or the output beam. For example, the SLM may be configured to alter the illumination profile of the incident beam to achieve different inspection modes. In another example, the SLM may be configured to alter the phase and/or amplitude profile of the output beam so as to substantially eliminate aberrations produced by the imaging optics. In other embodiments, the apparatus may include two or more SLM's which are configurable to alter the phase and/or amplitude profile of both the incident beam and the output beam.
Owner:KLA TENCOR TECH CORP

Method for obtaining the image of an object, device for carrying out said method and device for delivering low coherent optical radiation

The invention relates to studies of internal structures of objects with the aid of optical means. According to the invention an optical system (15) of the delivering device for low coherence optical radiation, in a particular embodiment, an optical fiber probe (8), includes at least two lens components (19), (20), which have a positive focal power and are positioned substantionally confocally. This ensures a constant propagation time for the low coherence optical radiation propagating from a given point of the transverse scanning surface (28) or (39) to a corresponding conjugate point of the image plane (22). That provides elimination of the transverse scanning related aberration of the optical path length for low coherence optical radiation directed towards the object (11) both for a flat transverse scanning surface (28) and for a transverse scanning surface (39) having a curvature. In another embodiment, together with the substantionally confocal arrangement of lens components (19), (20), the longitudinal scanning is performed by varying the optical path length for the low coherence optical radiation propagating from the transverse scanning surface (28) to the optical system (15), i.e., from the end face (17) of the distal part (18) of the optical fiber (14) to the optical system (15). To achieve this, a device for longitudinal scanning (10) is incorporated into the optical fiber probe (8). This ensures a corresponding shift of the focusing position of the low coherence optical radiation during longitudinal scanning, i.e., allows for alignment of the focusing position of the low coherence optical radiation with the position of the coherence gate and, consequently, their simultaneous movement.
Owner:IMALUX CORP

Fingerprint sensor using a spectral filter and a holographic optical element

In one embodiment, a fingerprint sensing system includes a interference narrow band pass filter, a holographic optical element, a transparent slab stacked together with optical cement. The finger is placed on the filter and illuminated by a narrow band source, the center of its band shifted appropriately with respect to the pass band of the interference filter. A camera on the other side of the slab receives the fingerprint image. The light from the valleys and ridges propagating in the direction of the camera are blocked by the interference filter. The light from the ridges at steep angles are bent by the holographic optical element and then directed towards the lens. This way the ridges are seen by the camera, but not the valleys. In another embodiment, a miniaturized version, the interference filter, a modified holographic optical element, and a blocking filter (if necessary) to block room light can be sequentially attached to the image sensor. In yet another embodiment, the interference filter can be directly coated over an image sensor creating a very simple fingerprint sensor. The principle behind all of the above embodiments is the same, viz: the spectral transmission band of an interference filter shifts with change in the angle of incidence.
Owner:BAHUGUNA RAMENDRA DEO

Method for obtaining the image of an object, device for carrying out said method and device for delivering low coherent optical radiation

The invention relates to studies of internal structures of objects with the aid of optical means. According to the invention an optical system (15) of the delivering device for low coherence optical radiation, in a particular embodiment, an optical fiber probe (8), includes at least two lens components (19), (20), which have a positive focal power and are positioned substantionally confocally. This ensures a constant propagation time for the low coherence optical radiation propagating from a given point of the transverse scanning surface (28) or (39) to a corresponding conjugate point of the image plane (22). That provides elimination of the transverse scanning related aberration of the optical path length for low coherence optical radiation directed towards the object (11) both for a flat transverse scanning surface (28) and for a transverse scanning surface (39) having a curvature. In another embodiment, together with the substantionally confocal arrangement of lens components (19), (20), the longitudinal scanning is performed by varying the optical path length for the low coherence optical radiation propagating from the transverse scanning surface (28) to the optical system (15), i.e., from the end face (17) of the distal part (18) of the optical fiber (14) to the optical system (15). To achieve this, a device for longitudinal scanning (10) is incorporated into the optical fiber probe (8). This ensures a corresponding shift of the focusing position of the low coherence optical radiation during longitudinal scanning, i.e., allows for alignment of the focusing position of the low coherence optical radiation with the position of the coherence gate and, consequently, their simultaneous movement.
Owner:IMALUX CORP

Three-dimensional imaging device for retina

The invention discloses a three-dimensional imaging device for a retina. The device consists of a light source component, an interference arm component, a two-dimensional scanning component, a field lens component, a confocal signal detection component and an interference signal detection component. The three-dimensional imaging device for the retina finishes scanning on the retina of a human eye by using the two-dimensional scanning component, extracts a surface image of the retina by using the confocal signal detection component and depth information of the retina by using the interference signal detection component, and jointly finishes the reconstruction of a three-dimension image of the retina through a confocal signal and an interference signal; the system is compact by adopting the design of optical fiber access and an optical fiber coupler; the influence of curvature of field and aberration in the imaging process is reduced through the design of a field lens so as to acquire a large-field-of-view three-dimensional image of the retina of the human eye; and the three-dimensional imaging device for the retina which is compactly designed and is high in imaging resolution and large in imaging field of view is realized, so that the imaging effect of the traditional fundus imaging instrument is greatly improved.
Owner:SUZHOU MICROCLEAR MEDICAL INSTR

Super-large-aperture wide-angle lens of single lens reflex camera

The invention discloses a super-large-aperture wide-angle lens of a single lens reflex camera.The super-large-aperture wide-angle lens comprises an optical lens which sequentially comprises 11 lenses from the object side to the image side; the first lens has negative power, and the object side face of the first lens is a convex face; the second lens has negative power, and the object side face of the second lens is a concave face; the third lens has positive power, and the object side face of the third lens is a plane; the fourth lens has positive power, and the object side face of the fourth lens is a convex face; the fifth lens has positive power, and the object side face of the fifth lens is a convex face; the sixth lens has negative power, and the object side face of the sixth lens is a convex face; the seventh lens has negative power, and the object side face of the seventh lens is a concave face; the eighth lens has positive power, and the object side face of the eighth lens is a convex face; the ninth lens has positive power, and the object side face of the ninth lens is a convex face; the tenth lens has negative power, and the object side face of the tenth lens is a convex face; the eleventh lens has positive power, and the object side face of the eleventh lens is a convex face.The super-large-aperture wide-angle lens of the single lens reflex camera can correct various aberrations and is compact in structure, good in imaging effect, long in back focal length, low in cost and high in cost performance ratio.
Owner:SHENZHEN DONGZHENG OPTICAL TECH CO LTD

Corrector for axial and off-axial beam paths

A corrector (1) for the axial and off-axial beam path of a particle-optical system, comprises a first (10) and a second (20) correction piece, which are disposed one behind the other in the beam path (2) on an optical axis (3). Each correction piece (10, 20) comprises four successive multipole elements (11, 12, 13, 14; 24, 23, 22, 21) disposed symmetrically with respect to a center plane (5) and with the following fields: wherein the first (11; 24) and the fourth (14; 21) multipole elements of the multipole elements (11, 12, 13, 14; 24, 23, 22, 21) are used to generate quadrupole fields (11′, 14′; 24′, 21′) and the second (12; 23) and third (13; 22) are used to generate octupole fields (12′″, 13′″; 23′″,22′″) and quadrupole fields (12′, 13′; 23′,22′), wherein the latter are superposed magnetic (12′, 13′; 23′, 22′) and electric fields (12″, 13″; 23″, 22″), wherein the quadrupole fields (11′, 12′, 13′, 14′; 24′, 23′, 22′, 21′) of all four multipole elements (11, 12, 13, 14; 24, 23, 22,21) are rotated from one to the next through 90°. An astigmatism of third order is corrected by a central multipole element disposed in the center plane and generating an octupole field.
Owner:CEOS CORRECTED ELECTRON OPTICAL SYST

Absolute interference measurement method for plane shape of optical plane

The invention relates to an absolute interference measurement method for a plane shape of an optical plane, belonging to the technical field of the optical measurement. The method is as follows: firstly, spherical waves diffracted from a measuring fiber are reflected by a plane mirror to be detected, deflects and penetrates a plane beam splitter, are converged with spherical wavefront diffracted by a reference optical fiber and reflected by the plane beam splitter and the interference happens; an interference pattern is analyzed and processed by a standard method; and the optical aberration introduced by the plane mirror to be detected and the plane beam splitter is obtained in the first step. And then, the plane mirror to be detected is removed; the end face of the measuring optical fiber is moved to the conjugation position of the plane mirror to be detected; and the spherical waves diffracted from the measuring fiber and the reference optical fiber are converged and interference happens again; and the aberration introduced by the plane beam splitter is obtained by measurement in the second step; the optical aberration introduced by the plane mirror to be detected is obtained by subtracting the measuring results in the first step and the second step and is corrected according to the incident angle of the spherical wavefront to obtain the plane shape of the plane mirror to be detected. The absolute interference measurement method realizes the holohedral form point-to-point and high accuracy interference measurement of the optical plane and is the plane absolute interference measurement method.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Large-visual-field-angle high-image-quality eyepiece optical system and head-mounted display device

The invention relates to a large-visual-field-angle high-image-quality eyepiece optical system and a head-mounted display device. The large-visual-field-angle high-image-quality eyepiece optical system comprises a first lens group and a second lens group which are coaxially and sequentially arranged from a human eye to an image source along an optical axis direction, wherein the first lens group and the second lens group satisfy a certain focal length relationship. The effective focal length of the first lens group is a negative value, and the first lens group is composed of a first lens close to the human eye and a second lens away from the human eye. The effective focal length of the second lens group is a positive value, and the second lens group is composed of one or two pieces of lenses. The first lens is in a biconvex shape, the optical surface, close to the human eye, of the second lens is recessed towards the human eye, and the first lens and the second lens are each of an aspheric surface type. The distance between the first lens and the second lens, a focal length relationship between lenses in the second lens group, and material characteristics of the lenses satisfy certain relationships, and the second lens group further comprises a fourth lens. The large-visual-field-angle high-image-quality eyepiece optical system has the advantages of large aperture, large field of view, high resolution, low distortion, small size and the like, and is suitable for the head-mounted display and similar devices.
Owner:SHENZHEN NED OPTICS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products