Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

40 results about "Incompressible material" patented technology

Answer Wiki. The molecules in an incompressible material is held to its length by a sufficient amount of force to resist change in distances between them.

One trip cemented expandable monobore liner system and method

An apparatus to protect the mounting area of casing and a locating profile and optionally a sliding sleeve valve and a flow path from the outside of the valve to the annulus when subsequent attachment of an expanded liner is intended and the expanded liner is to be cemented in place. A barrier sleeve, nose, and outer sleeve define a sealed cavity having a loose incompressible material inside that covers the mounting location on the casing. A locating profile and an optional sliding sleeve valve and a flow path from the outside of the valve to the annulus can be provided. The cementing of the casing takes place through the barrier sleeve. After the cementing, the sleeve and nose are drilled out and the incompressible material is removed to the surface with the drill cuttings. A liner is inserted in the casing and is preferably expanded into sealing contact with the mounting location on the casing. After expansion a cement retainer positioned at the bottom of the expanded liner and the sliding sleeve located either above the mounting location of the liner in the casing shoe or in the liner below the mounted top section allow cement to be delivered outside the expanded liner and the displaced wellbore fluid to return into the casing through so that the liner can be cemented. The cement retainer can be delivered with either the liner or the expansion tools to allow expansion and cementing in a single trip. A shifting tool can be run on the expansion string to actuate the sliding sleeve and if necessary to allow for cement to be pumped from the drill string into the annulus through the sliding sleeve. The cement retainer can be milled out in a separate trip.
Owner:BAKER HUGHES INC

One trip cemented expandable monobore liner system and method

An apparatus to protect the mounting area of casing and a locating profile and optionally a sliding sleeve valve and a flow path from the outside of the valve to the annulus when subsequent attachment of an expanded liner is intended and the expanded liner is to be cemented in place. A barrier sleeve, nose, and outer sleeve define a sealed cavity having a loose incompressible material inside that covers the mounting location on the casing. A locating profile and an optional sliding sleeve valve and a flow path from the outside of the valve to the annulus can be provided. The cementing of the casing takes place through the barrier sleeve. After the cementing, the sleeve and nose are drilled out and the incompressible material is removed to the surface with the drill cuttings. A liner is inserted in the casing and is preferably expanded into sealing contact with the mounting location on the casing. After expansion a cement retainer positioned at the bottom of the expanded liner and the sliding sleeve located either above the mounting location of the liner in the casing shoe or in the liner below the mounted top section allow cement to be delivered outside the expanded liner and the displaced wellbore fluid to return into the casing through so that the liner can be cemented. The cement retainer can be delivered with either the liner or the expansion tools to allow expansion and cementing in a single trip. A shifting tool can be run on the expansion string to actuate the sliding sleeve and if necessary to allow for cement to be pumped from the drill string into the annulus through the sliding sleeve. The cement retainer can be milled out in a separate trip.
Owner:BAKER HUGHES INC

One trip cemented expandable monobore liner system and method

An apparatus to protect the mounting area of casing and a locating profile and optionally a sliding sleeve valve and a flow path from the outside of the valve to the annulus when subsequent attachment of an expanded liner is intended and the expanded liner is to be cemented in place. A barrier sleeve, nose, and outer sleeve define a sealed cavity having a loose incompressible material inside that covers the mounting location on the casing. A locating profile and an optional sliding sleeve valve and a flow path from the outside of the valve to the annulus can be provided. The cementing of the casing takes place through the barrier sleeve. After the cementing, the sleeve and nose are drilled out and the incompressible material is removed to the surface with the drill cuttings. A liner is inserted in the casing and is preferably expanded into sealing contact with the mounting location on the casing. After expansion a cement retainer positioned at the bottom of the expanded liner and the sliding sleeve located either above the mounting location of the liner in the casing shoe or in the liner below the mounted top section allow cement to be delivered outside the expanded liner and the displaced wellbore fluid to return into the casing through so that the liner can be cemented. The cement retainer can be delivered with either the liner or the expansion tools to allow expansion and cementing in a single trip. A shifting tool can be run on the expansion string to actuate the sliding sleeve and if necessary to allow for cement to be pumped from the drill string into the annulus through the sliding sleeve. The cement retainer can be milled out in a separate trip.
Owner:BAKER HUGHES INC

One trip cemented expandable monobore liner system and method

An apparatus to protect the mounting area of casing and a locating profile and optionally a sliding sleeve valve and a flow path from the outside of the valve to the annulus when subsequent attachment of an expanded liner is intended and the expanded liner is to be cemented in place. A barrier sleeve, nose, and outer sleeve define a sealed cavity having a loose incompressible material inside that covers the mounting location on the casing. A locating profile and an optional sliding sleeve valve and a flow path from the outside of the valve to the annulus can be provided. The cementing of the casing takes place through the barrier sleeve. After the cementing, the sleeve and nose are drilled out and the incompressible material is removed to the surface with the drill cuttings. A liner is inserted in the casing and is preferably expanded into sealing contact with the mounting location on the casing. After expansion a cement retainer positioned at the bottom of the expanded liner and the sliding sleeve located either above the mounting location of the liner in the casing shoe or in the liner below the mounted top section allow cement to be delivered outside the expanded liner and the displaced wellbore fluid to return into the casing through so that the liner can be cemented. The cement retainer can be delivered with either the liner or the expansion tools to allow expansion and cementing in a single trip. A shifting tool can be run on the expansion string to actuate the sliding sleeve and if necessary to allow for cement to be pumped from the drill string into the annulus through the sliding sleeve. The cement retainer can be milled out in a separate trip.
Owner:BAKER HUGHES INC

Dynamic membrane filtering device and operation method thereof

The invention provides a dynamic membrane filtering device and an operation method thereof and relates to the technical field of sewage treatment. The dynamic membrane filtering device comprises a supporting net, filler, a casing and a water outlet pipe, wherein the supporting net is arranged in the casing, and the inside of the casing is divided into a water inlet cavity and a water producing cavity by the supporting net; the filler is arranged on the upper surface of the supporting net; the water outlet pipe is communicated with the water producing cavity; the filler is an incompressible material and is in a particle shape. In a process that sludge mixed liquid passes through the supporting net and the filler, sludge floc is compacter by compression under action of seepage pressure. As the filler is the incompressible material, the filler has a supporting framework effect, most seepage pressure action can be offset, and the phenomenon that a filter cake layer is compressed is relieved; thus, through holes for water to pass are guaranteed and reserved, operation flux is improved, and the sewage purifying efficiency is improved. In addition, the filler can quicken an initial process that the supporting net intercepts the sludge floc to form the filter cake layer, and film formation time is effectively reduced.
Owner:TIANJIN BISHUIYUAN MEMBRANE MATERIAL CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products