Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

147 results about "Microstructured optical fiber" patented technology

Microstructured optical fibers (MOF) are optical fiber waveguides where guiding is obtained through manipulation of waveguide structure rather than its index of refraction. In conventional optical fibers, light is guided through the effect of total internal reflection. The guiding occurs within a core of refractive index higher than refractive index of the surrounding material (cladding). The index change is obtained through different doping of the core and the cladding or through the use of different materials. In microstructured fibers, a completely different approach is applied. Fiber is built of one material (usually silica) and light guiding is obtained through the presence of air holes in the area surrounding the solid core. The holes are often arranged in the regular pattern in two dimensional arrays, however other patterns of holes exist, including non-periodic ones. While periodic arrangement of the holes would justify the use of term "photonic crystal fiber", the term is reserved for those fibers where propagation occurs within a photonic defect or due to photonic bandgap effect. As such, photonic crystal fibers may be considered a subgroup of microstructured optical fibers.

Bent non-sensitive micro-structured optical fiber and production method thereof

ActiveCN102354019AOvercoming Polarization Mode Dispersion Characteristic ProblemOvercomes ineffective bending lossCladded optical fibreOptical waveguide light guideEngineeringTower
The invention discloses a bent non-sensitive micro-structured optical fiber and a production method thereof. The bent non-sensitive micro-structured optical fiber comprises a germanium-doped fiber core and a quartz covering layer which covers the periphery of the fiber core; and 12 air holes are uniformly distributed on the surrounding of the fiber core. The production method comprises the following steps of: utilizing rod making equipment to prepare the germanium-doped fiber core; uniformly arraying 12 quartz pipes in a circumferential direction of the surrounding of the fiber core; fixing the tail ends of the 12 quartz pipes to form an integrated rod combining the bunched fiber cores and the quartz pipes; covering a quartz sleeve on the periphery of the integrated rod to form a bent non-sensitive micro-structured optical fiber prefabricated rod; and utilizing an optical fiber drawing tower to draw the bent non-sensitive micro-structured optical fiber prefabricated rod into the bent non-sensitive micro-structured optical fiber. According to the production method provided by the invention, the problem of bad bending loss effects caused by the asymmetry of micro-pores in the actualproduction process can be effectively solved and better characteristics such as small bending radius and low loss can be provided.
Owner:FENGHUO COMM SCI & TECH CO LTD

Weak-guide annular-structure optical fiber

The invention discloses a weak-guide annular-structure optical fiber. The weak-guide annular-structure optical fiber comprises an annular fiber core, a central zone and a cladding. The annular fiber core has step or gradient type refractive index distribution, and an auxiliary low-refractive-index annular groove can be disposed in an inner or outer side. A refractive index difference between the annular fiber core and the clapping/central zone does not exceed 1%. A refractive index difference between the annular groove and the clapping/central zone does not exceed -1%. The weak-guide annular-structure optical fiber only supports a multichannel radial first-order mode and is divided into different mode groups. The other mode groups except for the two front mode groups have large refractive index differences. The front two mode groups can be combined and then be multiplexed through a 6*6 Multiple Input Multiple Output (MIMO) digital signal processing assist, the other mode groups are multiplexed through a 4*4 MIMO-DSP assist in each mode group, i.e., inter-mode-group low-crosstalk multiplexing and small-scale MIMO-DSP assist multiplexing in mode groups are combined. Expandability is possessed. A mode base can be a linear polarization/optical vortex/intrinsic mode. And, the weak-guide annular-structure optical fiber has a C+L waveband broadband characteristic and is compatible with existing mature optical fiber technology, the communication capacity can be effectively improved through a combination with wavelength division multiplexing, and loss can be reduced.
Owner:HUAZHONG UNIV OF SCI & TECH +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products