Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

482 results about "Fiber drawing" patented technology

Method of manufacture of low water peak single mode optical fiber

The present invention directs to a method of manufacturing low water peak single mode optical fiber, which comprises performing deposition in a substrate tube using PCVD technology, whereby a deposited layer of a certain construction design is formed on the inner wall of the substrate tube, melt contracting the substrate tube into a solid core rod according to melt contraction technology, producing an optical fiber preform by combining the core rod and a jacket tube of low hydroxyl content by means of RIT technology or by depositing an outer cladding on the outer surface of the core rod using OVD technology, sending the optical fiber preform into a fiber drawing furnace to draw it into an optical fiber, wherein: in the PCVD technology, the content of impurities in a gas mixture of raw materials, which is characterized by the infrared spectrum transmissivity thereof, is required to a transmissivity of 90% or greater, the water content in O2 is 100 ppb or less, the water content in C2F6 is 1000 ppb or less, the hydroxyl content of the substrate tube is 1000 ppb or less, the dynamic leak rate of a deposition machine is 1.0×10−5 mbar·l/s or less; during melt contraction of the substrate tube, the dynamic leak rate of a melt contraction machine is 1.0×10−5 mbar·l/s or less; the hydroxyl content of the jacket tube of low hydroxyl content is required to be 10 ppm or less; the relative humidity of environment during the process of manufacture is 25% or less; the ratio of the cladding diameter to the core layer diameter (b/a value) in the waveguide structure of the optical fiber is from 2.0 to 7.0.
Owner:YANGTZE OPTICAL FIBRE & CABLE CO LTD

Method and apparatus for producing high strength, high modulus polyethylene filament by melt drawing

The invention discloses a method for producing polythene fiber with high strength and high modulus by melting fiber drawing and a device thereof. The method includes steps as follows: blend composition of polythene with super high molecular weight and three element blend composition of polythene with super high molecular weight are used as raw material, the raw material is spout fibre adobe after melted through a screw extruder, the fibre adobe is preset drafted after cooling, then low power drafted after once heating, then high power drafted after twice heating, finally is processed heat processing for obtaining polythene fiber with high strength and high modulus. The screw extruder, a cooling mechanism, a drafting machine processing preset drafting, an once heating mechanism, a low power drafting machine, a twice heating mechanism, a high power drafting machine, a heat processing mechanism, a winding reeling machine are arranged in the device orderly. The invention provides a producing method with simple technique, short producing flow, low cost and no pollution aiming at problem that UHMWPE melting spout fibre process has difficult to spin, and provides a device with compact equipment and easy to operate.
Owner:闫镇达

Preparation method of fiber grating

The invention relates to a preparation method of a fiber grating. The preparation method comprises the following steps: clamping a quartz glass matrix optical fiber performing bar on an optical fiber drawing tower to be molten and drawn, performing grating writing on the continuously descending bare fiber, coating the bare fiber with a coating, and performing ultraviolet curing, and at last reeling through a take-up reel, wherein the preparation method is characterized in that the grating writing adopts a phase-mask technique and uses a 193 nm excimer laser to perform monopulse exposure to write the bare fiber in the grating. The preparation method disclosed by the invention can be used for dynamically and continuously preparing the fiber grating array online, is simple, convenient and reasonable in process, and high in manufacturing efficiency; the grating written by the phase-mask technique and the 193 nm excimer laser is stable in central wavelength, good in spectral form, and high in consistency of grating reflectivity; the method can be used for preparing the high-quality grating array and solves the problems that the grating prepared by the fiber drawing tower online is poor in stability, low in reliability, poor in grating quality and low in efficiency; the prepared fiber grating array can be used for long-distance detection and signal transmission.
Owner:武汉烽理光电技术有限公司

Construction technique of fiber drawing archaized decoration coated by nitro lacquer for house

ActiveCN101468480AAchieve visual fullnessSolve surface lossPretreated surfacesWood working apparatusSolid woodLacquer
The invention relates to the technical field of home decoration, in particular to a construction process for home wiredrawing antique decoration. The invention discloses a construction process for home wiredrawing antique decoration, which comprises the following steps: material sanding, polyurethane ground paint coating, polyurethane ground paint sanding, nitryl true color ground paint coating, nitryl true color ground paint sanding, wiredrawing paint effect coating, nitryl transparent ground paint coating, nitryl glazing, nitryl transparent ground paint coating, cloth printing, lighting and shading, nitryl transparent ground paint coating, nitryl transparent ground paint sanding, nitryl glaze dry brushing, nitryl ground paint coating and nitryl transparent surface paint coating. The process can effectively achieve the paint film visual fullness and solve the problems of nitryl paint surface light loss and partial color change of antique furniture. At the same time, the process not only can ensure that solid wood furniture achieves wiredrawing antique coating effect, but also can ensure that a medium density fiber board or other composite materials are endowed with the wiredrawing antique coating effect, so that the wiredrawing antique effect can be achieved without adopting solid wood.
Owner:上海展辰涂料有限公司 +1

Method for preparing lead zirconate titanate ceramics fibre

InactiveCN101190845AIncrease stickinessHigh densityLead zirconate titanateTitanium butoxide
The invention provides a preparation method of lead zirconate-titante ceramic fiber, which relates to a ceramic fiber. The fiber obtained with the diameter less than 30Mum and the length about 1cm has a single perovskite phase and comparatively high consistency and the invention can be a preparation method of lead zirconate-titante ceramic fiber of ceramic fiber for 1-3 piezoelectric composites. The preparation of lead zirconate-titante precursor solution is : lead acetate trihydrate is added into n-Butyl alcohol, complexing agent glacial acetic acid is added then; the mixture is heated, dissolved and cooled to obtain solution A; zirconium butoxide and titanium butoxide are poured into the n-Butyl alcohol in sequence to obtain the binary mixed solution of zirconium and titanium, and then acetyl acetone is added into the binary mixed solution and solution B is obtained after backflowing; the solution A and the solution B are mixed and the lead zirconate-titante precursor solution is obtained after backflowing. The preparation of lead zirconate-titante precursor sol is: the lead zirconate-titante precursor solution is steamed, concentrated and stirred, rod winding is carried out and the lead zirconate-titante precursor sol is obtained after concentration; lead zirconate-titante gel fiber is obtained through fiber drawing; after aging, the lead zirconate-titante gel fiber is dried and carried out by heat treatment.
Owner:XIAMEN UNIV

Light intensity-adjustable fiber coating layer ultraviolet curing apparatus

The invention relates to a light intensity-adjustable fiber coating layer ultraviolet curing apparatus. The apparatus comprises a cylindrical mounting base, UVLED light source modules are circumferentially and axially arranged in the inner cavity of the cylindrical mounting base, a cylindrical focusing lens is arranged in front of the luminescence surfaces of the UVLED light source modules to make ultraviolet lights emitted by the UVLED light source modules focused on a curing axis, an ultraviolet sensor is arranged in the inner cavity of the cylindrical mounting base, the ultraviolet sensor is connected with an UVLED power supply control module through an ultraviolet intensity signal processing module, and the UVLED power supply control module is connected with the UVLED light source modules to make the fiber drawing speed and the ultraviolet intensity form a control closed loop. The apparatus allows the output of UVLED light sources and the fiber drawing speed to be adjusted and matched in real time in order to guarantee and improve the fiber coating layer curing quality, efficiently utilize the UVLED light sources and save electric energy; and the apparatus has the advantages of reasonable and simple structure, high curing efficiency, less energy consumption, high automation degree, good coating layer quality and simple use.
Owner:YANGTZE OPTICAL FIBRE & CABLE CO LTD

Mass production method for ultra-fine bonding gold wire

InactiveCN101607360AMeet the requirements of batch and large-scale productionSolid-state devicesFurnace typesExtensibilityMiniaturization
The invention discloses a mass production method for an ultra-fine bonding gold wire. The production method comprises the steps of a fusion casting process (alloy fusion casting), a fiber drawing process (coarse drawing, intermediate drawing, fine drawing and ultrafine drawing), an annealing process (final annealing and performance test), a winding process (fixed size compound winding) and the like. The method improves the alloy fusion casting process and the annealing process aiming at the mass production of the ultra-fine bonding gold wire, in the fusion casting process, by mainly utilizing the intermittent pull casting, and intermittently inhibiting the formation of columnar crystal, the small shaft diameter is formed conveniently, so that the extensibility of a cast ingot is ensured, and simultaneously certain strength can also be achieved, and the processing requirements of the ultra-fine bonding gold wire are better met. The product prepared by the method is suitable for the miniaturization packaging requirements of integrated circuits and large scale integrated circuits as well as low-cost requirements of packaging discrete devices and LEDs. The method has the characteristics of high yield of the ultrafine wire and good consistency among batch materials, and meets the requirements of batch and mass stable production.
Owner:北京达博有色金属焊料有限责任公司

Fiber pressure-retaining drawing device under pressurized steam

The invention relates to a fiber pressure-retaining drawing device under pressurized steam. The drawing device comprises a drawing cavity, wherein, a feeding steam seal component, a preheating drawing cavity, a middle steam seal component, a heating drawing cavity and a discharging steam seal component are sequentially arranged in the drawing cavity along the advancing direction of filament bundle; the preheating drawing cavity is equipped with a steam preheating pipe for providing steam to the preheating drawing cavity; the heating drawing cavity is equipped with a steam heating pipe for providing steam to the heating drawing cavity; a steam preheating chamber is arranged in the middle part outside the preheating drawing cavity, the wall of the preheating drawing cavity is made of a porous material, and the steam preheating chamber is communicated with the steam preheating pipe; and a steam heating chamber is arranged in the middle part outside the heating drawing cavity, the wall of the heating drawing cavity is made of a porous material, and the steam heating chamber is communicated with the steam heating pipe. By utilizing the fiber pressure-retaining drawing device, the technical problem of the existing fiber drawing device under the pressurized steam that the internal pressure can not meet the technological requirement is solved, and broken filaments caused by up-down vibration of the filament bundle are avoided so that the internal pressure and temperature of the drawing cavity reach a constant state.
Owner:西安航科等离子体科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products