Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

559results about "Glass deposition burners" patented technology

Method and apparatus for manufacturing a rare-earth metal doped optical fiber preform

InactiveCN1307544AHigh pump power absorptionSmall numerical apertureGlass deposition burnersOptical light guidesHigh concentrationGlass forming
A method and apparatus is disclosed for the manufacture of an optical fiber preform having incorporated therein a comparatively high concentration of rare earth metal dopant material, and which thus can be drawn and processed into an optical fiber having low numerical aperture, low core attenuation, and high pumping power absorption. The high concentrations of rare earth metal dopant material are accomplished through a ''hybrid vapor processing'' (HVP) method or a ''hybrid liquid processing'' (HLP) method, either being practiced in combination or independently of one another. The HVP method involves the vaporization of a rare earth metal halide by the exposure thereof to a sufficiently elevated temperature, independently, or contemporaneously with the transport of the resultant rare earth metal halide laden vapor, into a glass-forming oxidation reaction zone on a flowing stream of essentially an unreactive inert gas, such as helium. According to the HLP method, a first amount of rare earth metal dopant is provided according to the HVP method and/or other vapor source of rare earth metal dopant which is mixed with glass-forming vapors to form a deposited soot layer on the internal surface of a glass tube. The soot-deposited tube is then impregnated with a dopant solution comprising, a second amount of rare earth metal dopant. The tube is then thermally collapsed resulting in an optical preform with an enhanced amount of rare earth metal dopant incorporated at a comparatively high concentration. The apparatus comprises means, such as tubes, for introducing the rare earth metal dopant as a vapor, formed from a solid state form of the dopant, into the main glass deposition tube separately from glass-forming material vapors and oxygen for the reaction within the main tube.
Owner:JDS单相公司

Method of producing quartz glass bodies

PCT No. PCT/EP97/03818 Sec. 371 Date Mar. 3, 1998 Sec. 102(e) Date Mar. 3, 1998 PCT Filed Jul. 17, 1997 PCT Pub. No. WO98/03440 PCT Pub. Date Jan. 29, 1998In a known process for the production of quartz glass bodies, SiO2 particles are deposited of the mantle surface of a cylindrical carrier rotating about its longitudinal axis, forming an elongated, porous preform, where the SiO2 particles are formed in a plurality of flame hydrolysis burners which are arranged in at least one burner row parallel to the longitudinal axis of the carrier and are moved at a preset translational speed forward and back between turnaround points at which points their direction of movement is reversed, and in which process the preform is sintered. In order to make available on this basis an easily accomplished process that makes it possible to manufacture a preform which is largely free of localized density variations, the invention proposes on the one hand that the base value of the surface temperature of the preform being formed be kept in a range between 1,050 DEG C. and 1,350 DEG C., that the average peripheral velocity of the preform be kept in the range between 8 m/min and 15 m/min and the average translational velocity of the burner row be kept in a range between 300 mm/min and 800 mm/min. On the other hand, the object is also accomplished according to the invention and on the basis of the known process in that in the area of the turnaround points (A, B) the peripheral velocity of the preform being formed is increased and/or the flame temperature is lowered and/or the distance of the burners from the preform surface is changed.
Owner:HERAEUS QUARZGLAS

Method of manufacture of low water peak single mode optical fiber

The present invention directs to a method of manufacturing low water peak single mode optical fiber, which comprises performing deposition in a substrate tube using PCVD technology, whereby a deposited layer of a certain construction design is formed on the inner wall of the substrate tube, melt contracting the substrate tube into a solid core rod according to melt contraction technology, producing an optical fiber preform by combining the core rod and a jacket tube of low hydroxyl content by means of RIT technology or by depositing an outer cladding on the outer surface of the core rod using OVD technology, sending the optical fiber preform into a fiber drawing furnace to draw it into an optical fiber, wherein: in the PCVD technology, the content of impurities in a gas mixture of raw materials, which is characterized by the infrared spectrum transmissivity thereof, is required to a transmissivity of 90% or greater, the water content in O2 is 100 ppb or less, the water content in C2F6 is 1000 ppb or less, the hydroxyl content of the substrate tube is 1000 ppb or less, the dynamic leak rate of a deposition machine is 1.0×10−5 mbar·l/s or less; during melt contraction of the substrate tube, the dynamic leak rate of a melt contraction machine is 1.0×10−5 mbar·l/s or less; the hydroxyl content of the jacket tube of low hydroxyl content is required to be 10 ppm or less; the relative humidity of environment during the process of manufacture is 25% or less; the ratio of the cladding diameter to the core layer diameter (b/a value) in the waveguide structure of the optical fiber is from 2.0 to 7.0.
Owner:YANGTZE OPTICAL FIBRE & CABLE CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products