Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

654results about "Charging furnace" patented technology

Submerged combustion melter

InactiveUS20110236846A1Increase melter efficiencyReduce bypassCharging furnaceGlass furnace apparatusCombustorEngineering
A submerged combustion melter having a plurality of side walls, a bottom wall adjacent the side walls, and a top wall adjacent the side walls, the walls collectively enclosing a melting chamber, and the bottom wall forming a plurality of openings, each of which is adapted to receive a submerged combustion burner. Each of the submerged combustion burners is positioned at least 4 inches from the side walls, at least twice as far apart from each other as the distance between the submerged combustion burners and the side walls, and less than or equal to about 20 inches apart.
Owner:GAS TECH INST

Methods and apparatus for recycling glass products using submerged combustion

ActiveUS20120077135A1Reduce eliminate needCharging furnaceGlass furnace apparatusCombustionEngineering
A method for recycling glass mat waste, wound rovings, and other products includes providing a source of glass mat, or a plurality of rovings, for example on a roll, and routing the glass mat or rovings into a submerged combustion melter. An unwind system and a pair of powered nip rolls, powered conveyors, or other arrangement may work in combination to provide a substantially consistent rate of material into the melter. The melter may operate under less than atmospheric pressure to avoid fumes escaping the melter. A slot in the melter allows ingress of the glass mat or rovings into the melter, and a glass mat former such as a folder may be used to ensure that the mat fits through the slot. Alternatively, the glass mat may be cut by a slitter prior to entering the slot.
Owner:JOHNS MANVILLE CORP

Oxygen-fired front end for glass forming operation

A front end for a glass forming operation comprises an open channel and at least one burner. The channel has at least one surface. The surface has at least one hole therein. The burner is oriented in the hole at an acute angle relative to the surface. In another embodiment of the invention, the channel has a top and a pair of sidewalls each having a surface. At least one hole is in at least one of the surfaces. The hole is at an acute angle relative to at least one surface. The burner is an oxygen-fired burner. In yet another embodiment of the invention, the top and sidewalls each have a super structure surface constructed of refractory material. The channel has an upstream end and a downstream end. At least one of the surfaces has a plurality of holes therein. The burners extend at an acute angle relative to at least one surface and in a plane extending between the upstream end and the downstream end and perpendicular to at least one surface. Oxygen-fired burners extend axially through corresponding holes.
Owner:OCV INTELLECTUAL CAPITAL LLC

Method of forming a glass melt

A method of forming a glass melt including heating a glass feed material in a first melting furnace to form a glass melt, flowing the glass melt into a second melting furnace through a refractory metal connecting tube, and further heating the glass melt in the second melting furnace. The refractory metal connecting tube is heated to prevent the molten glass from excessive cooling, and to ensure that the glass melt entering the second melting furnace is equal to or greater than the temperature of the glass melt in the second melting furnace. An apparatus for performing the method is also disclosed.
Owner:CORNING INC

Submerged combustion melter comprising a melt exit structure designed to minimize impact of mechanical energy, and methods of making molten glass

A melter apparatus includes a floor, a ceiling, and a wall connecting the floor and ceiling at a perimeter of the floor and ceiling, a melting zone being defined by the floor, ceiling and wall, the melting zone having a feed inlet and a molten glass outlet positioned at opposing ends of the melting zone. Melter apparatus include an exit end having a melter exit structure for discharging turbulent molten glass formed by one or more submerged combustion burners, the melter exit structure fluidly and mechanically connecting the melter vessel to a molten glass conditioning channel. The melter exit structure includes a fluid-cooled transition channel configured to form a frozen glass layer or highly viscous glass layer, or combination thereof, on inner surfaces of the fluid-cooled transition channel and thus protect the melter exit structure from mechanical energy imparted from the melter vessel to the melter exit structure.
Owner:JOHNS MANVILLE CORP

Low heat capacity gas oxy fired burner

A front end for a glass forming operation including an open channel and at least one burner. The channel surface has at least one burner port and a burner oriented in the burner port at an acute angle relative to the channel surface. The surface may be a top, side or end wall and the burner port is at an acute angle relative to the surface of the wall.
Owner:OCV INTELLECTUAL CAPITAL LLC

Method of manufacturing glass melt and method of manufacturing molded glass material

A method of manufacturing glass melt and a method of manufacturing molded glass material by forming glass melt. In the method of manufacturing glass melt, the glass melt containing fluorine is prepared by melting glass raw materials and refining the resulting glass melt. The refining is conducted in a refining vat equipped with a flow inlet through which flows glass melt obtained by heating and melting the glass raw materials, and a flow outlet through which flows glass melt that has been refined, with the level of the glass melt being maintained in such a manner that the flow inlet and flow outlet remain beneath the surface of the glass melt and the glass melt does not contact external air. The method of manufacturing a molded glass material comprises the step of molding the glass melt produced by the above method.
Owner:HOYA CORP

Submerged combustion melting processes for producing glass and similar materials, and systems for carrying out such processes

Processes of controlling submerged combustion melters, and systems for carrying out the methods. One process includes feeding vitrifiable material into a melter vessel, the melter vessel including a fluid-cooled refractory panel in its floor, ceiling, and / or sidewall, and heating the vitrifiable material with a burner directing combustion products into the melting zone under a level of the molten material in the zone. Burners impart turbulence to the molten material in the melting zone. The fluid-cooled refractory panel is cooled, forming a modified panel having a frozen or highly viscous material layer on a surface of the panel facing the molten material, and a sensor senses temperature of the modified panel using a protected thermocouple positioned in the modified panel shielded from direct contact with turbulent molten material. Processes include controlling the melter using the temperature of the modified panel. Other processes and systems are presented.
Owner:JOHNS MANVILLE CORP

Method and device for melting and refining materials capable of being vitrified

A process for melting and refining vitrifiable materials, such that all or part of the thermal energy necessary for melting the said vitrifiable materials is supplied by the combustion of fossil fuel(s) with at least one oxidizer gas, the fuel(s) / gas or the gaseous products resulting from the combustion being injected below the level of the mass of vitrifiable materials (7). The refining of the vitrifiable materials after melting comprises at least one step of subjecting them to subatmospheric pressure while centrifuging.
Owner:SAINT-GOBAIN GLASS FRANCE

Method of recycling batches of mixed color cullet into amber, green, or flint glass with selected properties

An automated method for recycling mixed colored cutlet glass (i.e., broken pieces of glass of mixed colors and types) into new glass products. A computer controlled process identifies the virgin glass raw materials, the desired target glass properties, the composition of a batch of mixed colored cullet, and the quantity of cullet to be used in the glass melt, and the computer controlled process automatically determines the proper amounts of raw materials to add to the batch of mixed colored cullet so that recycled glass is produced having the desired coloring oxides, redox agents, and glass structural oxides in the proper proportion. The recycled glass is then used to make glass products such as beer bottles.
Owner:CULCHROME LLC

Downward Firing Oxygen-Fuel Burners for Glass Melting Furnaces

InactiveUS20100300153A1Maximize convective transferMaximize radiant heat transferCharging furnaceGlass furnace apparatusCombustorEngineering
This invention relates to a glass melting furnace with downward firing oxygen-fuel burners placed in the breast walls of the combustion space and adjacent to the skew block. The downward firing oxygen-fuel burner may be placed at an angle so that the oxygen-fuel flame from the downward firing oxygen-fuel burner impinges on the upper surface of the glass bath. The placement and angle of the downward firing oxygen-fuel burner may maximize the amount of heat transferred to the batch cover or the molten glass, ensure the formation of high quality glass products, and protect the integrity of the downward firing oxygen-fuel burners and the glass melting furnace.
Owner:ZHANG ZHIFA +1

Method of manufacturing high performance glass fibers in a refractory lined melter and fiber formed thereby

ActiveUS20070105701A1Inexpensively formed into glass fiberUse in some applicationCharging furnaceGlass furnace apparatusFiberAlkali metal oxide
A method of forming high strength glass fibers in a refractory lined glass melter is disclosed. The refractory fined melter is suited to the batch compositions disclosed for the formation high modulus, and high-strength glass fibers. The glass composition for use in the method of the present invention is up to about 70.5 Weight % SiO2, 24.5 weight % Al2O3, 22 weight % alkaline earth oxides and may include small amounts of alkali metal oxides and ZrO2. Oxide based refractories included alumina, chromic oxide, silica, alumina-silica, zircon, zirconia-alumina-silica and combinations thereof. By using oxide based refractory lined furnaces the cost of production of glass fibers is substantially reduced in comparison with the cost of fibers using a platinum lined melting furnace. Fibers formed by the present invention are also disclosed.
Owner:OWENS CORNING INTELLECTUAL CAPITAL LLC

Burner injection system for glass melting

A burner for melting glass forming batch material includes a burner assembly constructed and arranged with a first passage for providing a fuel stream and a second passage for providing an oxidant stream, the first and second streams coacting to produce a supersonic combustion jet flame penetrable into glass melt. A method for melting glass forming batch material is also provided and includes providing a fuel stream; providing an oxidant stream; mixing the fuel and oxidant streams with sufficient force for providing a supersonic combustion jet flame; directing the supersonic combustion jet flame to contact the glass forming batch material; and penetrating the glass forming batch material to a select depth with the supersonic combustion jet flame.
Owner:LINDE AG

Submerged combustion melting processes for producing glass and similar materials, and systems for carrying out such processes

Processes of controlling submerged combustion melters, and systems for carrying out the methods. One process includes feeding vitrifiable material into a melter vessel, the melter vessel including a fluid-cooled refractory panel in its floor, ceiling, and / or sidewall, and heating the vitrifiable material with a burner directing combustion products into the melting zone under a level of the molten material in the zone. Burners impart turbulence to the molten material in the melting zone. The fluid-cooled refractory panel is cooled, forming a modified panel having a frozen or highly viscous material layer on a surface of the panel facing the molten material, and a sensor senses temperature of the modified panel using a protected thermocouple positioned in the modified panel shielded from direct contact with turbulent molten material. Processes include controlling the melter using the temperature of the modified panel. Other processes and systems are presented.
Owner:JOHNS MANVILLE CORP

Processes for producing molten glasses from glass batches using turbulent submerged combustion melting, and systems for carrying out such processes

ActiveUS20140007622A1Reduce and eliminate batch lossCharging furnaceTank furnacesParticulatesCombustor
Processes and systems for producing molten glass using submerged combustion melters, including densifying an initial composition comprising vitrifiable particulate solids and interstitial gas to form a densified composition comprising the solids by removing a portion of the interstitial gas from the composition. The initial composition is passed from an initial environment having a first pressure through a second environment having a second pressure higher than the first pressure to form a composition being densified. Any fugitive particulate solids escaping from the composition being densified are captured and recombined with the composition being densified to form the densified composition. The densified composition is fed into a feed inlet of a turbulent melting zone of a melter vessel and converted into turbulent molten material using at least one submerged combustion burner in the turbulent melting zone.
Owner:JOHNS MANVILLE CORP

Silica glass containing TiO2 and process for its production

It is to provide a silica glass containing TiO2, having a wide temperature range wherein the coefficient of thermal expansion is substantially zero. A silica glass containing TiO2, which has a TiO2 concentration of from 3 to 10 mass %, a OH group concentration of at most 600 mass ppm and a Ti3+ concentration of at most 70 mass ppm, characterized by having a fictive temperature of at most 1,200° C., a coefficient of thermal expansion from 0 to 100° C. of 0±150 ppb / ° C., and an internal transmittance T400-700 per 1 mm thickness in a wavelength range of from 400 to 700 nm of at least 80%. A process for producing a silica glass containing TiO2, which comprises porous glass body formation step, F-doping step, oxygen treatment step, densification step and vitrification step.
Owner:ASAHI GLASS CO LTD

Glass melting process and apparatus with reduced emissions and refractory corrosion

A glassmelting apparatus which reduces alkali corrosion comprising: a glassmelting furnace having a plurality of walls, a crown, a charge end, a batch melting area and a fining area; at least two low momentum oxy-fuel burners located in at least one of the walls of the glassmelting furnace, each burner having at least one gas exit port, the lowest point of each gas exit port of each burner having a vertical position that is raised to a height of about 18 inches to about 36 inches above the surface of the glass; each oxy-fuel burner generating a flame along a path directed towards an opposite vertical wall of the glassmelting furnace; and said interior intersection of said walls and said crown of said glassmelting furnace being located at a height of between about 5.5 feet and 9 feet above the glassmelt surface.
Owner:PRAXAIR TECH INC

Methods and apparatus for recycling glass products using submerged combustion

A method for recycling glass mat waste, wound rovings, and other products includes providing a source of glass mat, or a plurality of rovings, for example on a roll, and routing the glass mat or rovings into a submerged combustion melter. An unwind system and a pair of powered nip rolls, powered conveyors, or other arrangement may work in combination to provide a substantially consistent rate of material into the melter. The melter may operate under less than atmospheric pressure to avoid fumes escaping the melter. A slot in the melter allows ingress of the glass mat or rovings into the melter, and a glass mat former such as a folder may be used to ensure that the mat fits through the slot. Alternatively, the glass mat may be cut by a slitter prior to entering the slot.
Owner:JOHNS MANVILLE CORP

Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter

Methods and systems for de-stabilizing foam produced in submerged combustion melters. A molten mass of glass and bubbles is flowed into an apparatus downstream of a submerged combustion melter. The downstream apparatus includes a floor, a roof and a wall connecting the floor and roof, but is devoid of submerged combustion burners and other components that would increase turbulence of the molten mass. The molten mass has foam on at least a portion of a top surface of the molten mass. Certain methods include imposing a de-stabilizing force directly to the foam or to the molten mass and foam, where the de-stabilizing force may be a vibratory force, an acoustic wave force, a particulate-based force, or a non-particulate-based mechanical force. Systems for carrying out the methods are described.
Owner:JOHNS MANVILLE CORP

Automated process for recycling batches of mixed color cullet into amber, green, or flint glass with selected properties

An automated method for recycling mixed colored cullet glass (i.e., broken pieces of glass of mixed colors and types) into new glass products. A computer controlled process identifies the virgin glass raw materials, the desired target glass properties, the composition of a batch of mixed colored cullet, and the quantity of cullet to be used in the glass melt, and the computer controlled process automatically determines the proper amounts of raw materials to add to the batch of mixed colored cullet so that recycled glass is produced having the desired coloring oxides, redox agents, and glass structural oxides in the proper proportion. The recycled glass is then used to make glass products such as beer bottles.
Owner:CULCHROME LLC

Systems and methods for glass manufacturing

Submerged combustion systems and methods of use to produce glass. One system includes a submerged combustion melter having a roof, a floor, a wall structure connecting the roof and floor, and an outlet, the melter producing an initial foamy molten glass. One or more non-submerged auxiliary burners are positioned in the roof and / or wall structure and configured to deliver combustion products to impact at least a portion of the bubbles with sufficient force and / or heat to burst at least some of the bubbles and form a reduced foam molten glass.
Owner:JOHNS MANVILLE CORP

Methods of using a submerged combustion melter to produce glass products

A method comprises flowing an oxidant and a fuel into a submerged combustion burner in a glass tank furnace, the glass tank furnace receiving a feed of glass forming material and producing molten glass, the burner and furnace comprising a melting system. The melting system has a variable system vibration and / or oscillation due to the nature of submerged combustion. One method includes predicting a value of at least one property, such as viscosity, of the molten glass using the variable system vibration and / or oscillation.
Owner:JOHNS MANVILLE CORP

Method of manufacturing glass melt and method of manufacturing molded glass material

A method of manufacturing glass melt and a method of manufacturing molded glass material by forming glass melt. In the method of manufacturing glass melt, the glass melt containing fluorine is prepared by melting glass raw materials and refining the resulting glass melt. The refining is conducted in a refining vat equipped with a flow inlet through which flows glass melt obtained by heating and melting the glass raw materials, and a flow outlet through which flows glass melt that has been refined, with the level of the glass melt being maintained in such a manner that the flow inlet and flow outlet remain beneath the surface of the glass melt and the glass melt does not contact external air. The method of manufacturing a molded glass material comprises the step of molding the glass melt produced by the above method.
Owner:HOYA CORP

Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter

Methods and systems for de-stabilizing foam produced in submerged combustion melters. A molten mass of glass and bubbles is flowed into an apparatus downstream of a submerged combustion melter. The downstream apparatus includes a floor, a roof and a wall connecting the floor and roof, but is devoid of submerged combustion burners and other components that would increase turbulence of the molten mass. The molten mass has foam on at least a portion of a top surface of the molten mass. Certain methods include imposing a de-stabilizing force directly to the foam or to the molten mass and foam, where the de-stabilizing force may be a vibratory force, an acoustic wave force, a particulate-based force, or a non-particulate-based mechanical force. Systems for carrying out the methods are described.
Owner:JOHNS MANVILLE CORP

Melting and refining in tanks with cooled walls

InactiveUS8424342B2Reduce energy demand per unit weightCharging furnaceTank furnacesResidence timeGlass-ceramic
A method for melting inorganic materials, preferably glasses and glass-ceramics, in a melting unit with cooled walls is provided. The method includes selecting the temperature of at least one region of the melt is selected in such a way as to be in a range from Teff−20% to Teff+20%, where the temperature Teff is given by the temperature at which the energy consumption per unit weight of the material to be melted is at a minimum, with the throughput having been selected in such a way as to be suitably adapted to the required residence time.
Owner:SCHOTT AG

Furnace with multiple heat recovery systems

In a furnace such as a glassmelting furnace, a portion of the combustion products formed by combustion of fuel with gaseous oxidant within the furnace are passed through a recuperative or regenerative heat exchanger system to heat a portion of the incoming gaseous oxidant, and a portion of the combustion products are passed instead through a secondary heat exchanger system, wherein the hot combustion products and oxidant which are passed through said first heat exchanger are passed at a heat capacity rate ratio of combustion products to oxidant of less than 1.3.
Owner:PRAXAIR TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products