Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1812 results about "Heat processing" patented technology

Heat processing. Subjecting a substance to higher than normal temperatures to obtain desired properties. Cooking is heat processing in which bacteria in food are killed and flavor, consistency, and texture is enhanced.

Novel heat-resisting titanium alloy and processing and manufacturing method and application thereof

ActiveCN104018027AAvoid uniformityAvoid forging crackingHeat stabilityTitanium
The invention belongs to the field of titanium-based alloys, and particularly relates to a novel heat-resisting titanium alloy and a processing and manufacturing method and application thereof. The processing and manufacturing method comprises the composition elements of alloy components, smelting, heat processing, heat treatment and the like, wherein the alloy components are as follows (in percentage by weight): 5.4%-6.3% of Al, 3.0%-5.0% of Sn, 2.5%-6.4% of Zr, 0.0%-0.96% of Mo, 0.25%-0.5% of Si, 0.2%-0.5% of Nb, 0.3%-3.4% of Ta, 0.2%-1.6% of W, 0.0%-0.07% of C, less than or equal to 0.17% of O, less than or equal to 0.03% of Fe and the balance of Ti and inevitable impurity elements. The novel heat-resisting titanium alloy disclosed by the invention can obtain different matching of tensile strength, plasticity, permanence, creep strength and heat stability through the combination of different heat processing process and heat treatment processes, can be used for manufacturing parts, namely blades, coil assemblies and the like which are positioned on the high-temperature parts of an advanced aircraft engine, is used for a long time within a range of 600-650 DEG C, can also be used for manufacturing high temperature-resistant structural members, namely aerospace craft skin and the like, is used for a short time at about 700 DEG C and can be used as a material and the like used for high temperature-resistant corrosion-resistant valves of an automobile and a boiler.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Orientation electro-spinning nanometer fiber spinning method and device thereof

InactiveCN103132194AHigh degree of axial orientationSuppress spinning instabilityDrafting machinesFilament/thread formingBobbinEngineering
The invention discloses an orientation electro-spinning nanometer fiber spinning method and a device thereof. A metal shower nozzle which exerts positive and negative high pressure is adopted to spin two strands of nanometer fibers with opposite charges, an electric field line of a spinning electric field, relative to a common spinning electric field, is straight, stability of spinning is effectively restrained, and the spinning nanometer fibers are straight. Two strands of the fibers surround the yarn tail and form a cone-shaped twisting trigonum on the upper portion of a metal twisting machine, and enable the nanometer fibers to be further oriented and twisted to form yarn through electric field force, tractive force of the yarn and acting force of the metal twisting force. The spinning nanometer fiber yarn is conducted heat shaping through a heat processing device under certain tensile force, degree of orientation of the nanometer fibers along the axial direction of the yarn, breaking force and yarn levelness are further improved, and the yarn after shaped is collected by a winding bobbin. The device can achieve the aim that orientation nanometer fiber yarn can be continuously prepared, is simple in device, convenient to operate, and good in resultant yarn continuity, yarn breaking strength and yarn levelness, and not only can spin pure nanometer fiber yarn, but also can spin nanometer fibers / filament core composite yarn. The orientation nanometer fiber spinning method and the device thereof have important application value in the fields, such as a biomedical field and a sensor field.
Owner:杨恩龙 +1

Method for producing wind-electricity principal axis with gathering stock full fibre upset forging

The invention relates to a method for producing a wind-power mainshaft by local continuous upsetting and all-fibre upset forging. The method comprises the following: step one, the heating of steel ingot; step two, forging; step three, first heat processing; step four, rough machining and ultrasonic inspection; step five, quenching and tempering and heat processing; step six, fine machining, wherein, during the step two, the forging comprises that: (1) a first fire, during which, a steel ingot is subject to upset forging at a forging temperature of between 1250 and 900 DEG C; firstly, the bottom of the steel ingot is sawed off, and the steel ingot is subject to capping and upset forging; (2) a second fire, during which, the steel ingot is stretched towards various directions, marked and subject to intermediate billet cogging; after a pole part is molded, scrap on a T end is chopped and removed; after the forging is finished, the steel ingot returns to a heating furnace for being reheated; (3) a third fire, during which, the steel ingot is subject to local continuous upsetting and all-fibre upset forging; (4) a fourth fire, during which, the steel ingot is subject to rolling and leveling; the pole part is stretched; the disc edge of a hub end on the head part of an intermediate billet material after the local continuous upsetting and all-fibre upset forging is subject to rolling operation; after the rolling, the intermediate billet material is inserted into a leaking disc component again; the end face of the disc is pressed and leveled; after the shaping of the disc end is completed, a manipulator clamps the disc and stretches the pole part of the intermediate billet material to a dimension of a forgeable piece; thus, the mainshaft forging is completed. The method can improve the fatigue resisting strength of a wind-power mainshaft forging piece.
Owner:JIANGYIN ZENKUNG FORGING CO LTD

Functional soy peptide fermented milk and preparation method thereof

The invention provides functional soy peptide fermented milk and a preparation method thereof and relates to a manufacturing method of fermented dairy products in the field of food processing. The method is carried out according to the following steps: (1) the preparation of fermented base stock; (2) the preparation of mother cultures; (3) synchronous enzymolysis and fermentation; (4) blending and homogenizing; (5) ultrahigh pressure sterilization and filling; by adopting the steps, a finished product is obtained. The method adopts protease and lactic acid bacteria synchronous-enzymolysis fermentation technology, and ultrasonic waves are adopted to process slurry-residue mixture which is ground, so as to increase the dissolving-out rate of the protein and prepare acidity soy-bean milk by ultrahigh pressure and non-heat processing. The product taste is coordinated without enzymolysis odour; the enzymolysis fermentation time can shorten to 2-4h, and the production cost is low. The ultrahigh pressure processing can remarkably improve the product taste; the method can keep and produce new functional peptide, the lactic acid bacteria is inhibited to ferment continuously, and a certain micro-organism viable counts are kept; the shelf life of the acidity soy-bean milk is prolonged, so as to prevent the acid milk from being whey-separated owning to continuous increasing of acidity; inaddition, the product can be stored and marketed at normal temperature.
Owner:JIANGSU UNIV

Heat processing apparatus, method of automatically tuning control constants, and storage medium

A heat processing apparatus comprises: a reaction vessel; a heating unit disposed in the reaction vessel and configured to heat the processing region; a temperature detection part configured to detect a temperature of the processing region; and a control part configured to control the heating unit by a PID control. The control part includes: a rule table that is prepared such that predicted change amounts of a temperature property item when a temperature of the processing region is increased up to a target value, and change ratios of PID constants are correspondingly related to each other; a performance unit configured to repeatedly perform: a step of obtaining a temperature profile based on a temperature detected value of the temperature detection part and calculating a difference between an actually measured value and a target value of the temperature property item based on the temperature profile; and a step of, when the difference is over an allowable range and larger than a prescribed value, referring to the rule table and changing the PID constants to reset new PID constants by a change ratio corresponding to an predicted change amount of the temperature property item relative to the difference; until the difference can fall within the allowable range. The control part also includes an updating unit configured to update, when there is a difference between an actually measured change amount of the temperature property item with reference to the rule table and an predicted change amount of the temperature property item that has been predicted in the preceding cycle, the corresponding relationship between the PID constants and the predicted change amounts of the temperature property item described in the rule table, based on the actually measured change amount.
Owner:TOKYO ELECTRON LTD

High-strength low-temperature-resisting spheroidal graphite cast iron and preparing method thereof

The invention relates to the field of spheroidal graphite cast iron, in particular to high-strength low-temperature-resisting spheroidal graphite cast iron and a preparing method thereof. The spheroidal graphite cast iron comprises, by mass percent, 3.2% to 3.5% of carbon, 2.1% to 2.3% of silicon, 0.4% to 0.5% of manganese, 0.4% to 0.6% of copper, 0.2% to 0.4% of nickel, 0.2% to 0.4% of molybdenum, 0.04% to 0.06% of magnesium, 0.05% to 0.08% of chromium, 0.005% to 0.008% of titanium, 0.002% to 0.003% of vanadium, not larger than 0.04% of phosphorus, not larger than 0.02% of sulphur and the balance iron. The preparing method of the high-strength low-temperature-resisting spheroidal graphite cast iron comprises following steps: firstly, raw materials are smelted; secondly, spheroidizing treatment and inoculation are carried out; and thirdly, heat treatment is carried out. Through reasonable arrangement of all element components, the tensile strength of the spheroidal graphite cast iron is improved, a proper nucleating agent is prepared, internal inoculation matched with inoculation in a ladle is adopted, the inoculation effect is reinforced, meanwhile, during heat treatment, the heating temperature, the heat preservation time, the cooling rate and the manner are reasonably arranged, the strength and low temperature resistance of the iron are effectively improved, the spheroidal graphite cast iron is high in strength and excellent in low temperature resistance, and the preparing method is simple and efficient.
Owner:HANSHAN COUNTY XINGDA DUCTILE IRON FACTORY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products