Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

444results about "Molecular-sieve silica-polymorphs" patented technology

Method of the preparation of microporous crystalline molecular sieve possessing mesoporous frameworks

The present invention relates to a method of preparing a microporous crystalline molecular sieve having mesoporous skeleton, comprising following steps: (a) adding a meso-SDA (meso-Structure Directing Agent) into a gel composition of synthesizing molecular sieve, (b) subjecting the mixture obtained in the above step (a) to crystallization by a hydrothermal reaction, a microwave reaction, a dry-gel synthesis, etc., and (c) removing selectively organic materials from the resulted material obtained in the above step (b) by a calcination or a chemical treatment. Molecular sieve having mesoporous skeleton synthesized by the present invention exhibits, as compared with conventional zeolite, a good molecule diffusion ability and a greatly improved catalytic activity.
Owner:KOREA ADVANCED INST OF SCI & TECH

Inorganic material that has metal nanoparticles that are trapped in a mesostructured matrix

An inorganic material that consists of at least two elementary spherical particles, each of said spherical particles comprising metal nanoparticles that are between 1 and 300 nm in size and a mesostructured matrix with an oxide base of at least one element X that is selected from the group that consists of aluminum, titanium, tungsten, zirconium, gallium, germanium, tin, antimony, lead, vanadium, iron, manganese, hafnium, niobium, tantalum, yttrium, cerium, gadolinium, europium and neodymium is described, whereby said matrix has a pore size of between 1.5 and 30 nm and has amorphous walls with a thickness of between 1 and 30 nm, said elementary spherical particles having a maximum diameter of 10 μm. Said material can also contain zeolitic nanocrystals that are trapped within said mesostructured matrix.
Owner:INST FR DU PETROLE

Chabazite-containing molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins

A crystalline material substantially free of framework phosphorus and comprising a CHA framework type molecular sieve with stacking faults or at least one intergrown phase of a CHA framework type molecular sieve and an AEI framework type molecular sieve, wherein said material, in its calcined, anhydrous form, has a composition involving the molar relationship:(n)X2O3:YO2,wherein X is a trivalent element; Y is a tetravalent element; and n is from 0 to about 0.5. The material exhibits activity and selectivity in the conversion of methanol to lower olefins, especially ethylene and propylene.
Owner:EXXONMOBIL CHEM PAT INC +1

Treatment of CHA-type molecular sieves and their use in the conversion of oxygenates to olefins

A method is disclosed of treating a crystalline material comprising a CHA framework-type molecular sieve, wherein said crystalline material has a composition and involving the molar relationship:(n)X2O3:YO2,where X is a trivalent element, Y is a tetravalent element, and n is less than 0.07, and wherein the crystalline material does not comprise a silicoaluminophosphate, is substantially free of framework phosphorus, or both. The method can comprise treating the crystalline material with steam under conditions such that the prime olefin selectivity of the treated material in an oxygenate conversion process is greater than the prime olefin selectivity of the untreated material in the same process.
Owner:EXXONMOBIL CHEM PAT INC

Synthesis of chabazite-containing molecular sieves and their use in the conversion of oxygenates to olefins

The synthesis of a crystalline material, in particular, a high silica zeolite, comprising a chabazite-type framework molecular sieve is conducted in the presence of an organic directing agent having the formula: [R1R2R3N—R4]+Q−wherein R1 and R2 are independently selected from hydrocarbyl groups and hydroxy-substituted hydrocarbyl groups having from 1 to 3 carbon atoms, provided that R1 and R2 may be joined to form a nitrogen-containing heterocyclic structure, R3 is an alkyl group having 2 to 4 carbon atoms and R4 is selected from a 4- to 8-membered cycloalkyl group, optionally, substituted by 1 to 3 alkyl groups each having from 1 to 3 carbon atoms; and a 4- to 8-membered heterocyclic group having from 1 to 3 heteroatoms, said heterocyclic group being, optionally, substituted by 1 to 3 alkyl groups each having from 1 to 3 carbon atoms and the or each heteroatom in said heterocyclic group being selected from the group consisting of O, N, and S, or R3 and R4 are hydrocarbyl groups having from 1 to 3 carbon atoms joined to form a nitrogen-containing heterocyclic structure; and Q− is a anion.
Owner:EXXONMOBIL CHEM PAT INC

Inorganic material that has metal nanoparticles that are trapped in a mesostructured matrix

An inorganic material that consists of at least two elementary spherical particles, each of said spherical particles comprising metal nanoparticles that are between 1 and 300 nm in size and a mesostructured matrix with an oxide base of at least one element X that is selected from the group that consists of aluminum, titanium, tungsten, zirconium, gallium, germanium, tin, antimony, lead, vanadium, iron, manganese, hafnium, niobium, tantalum, yttrium, cerium, gadolinium, europium and neodymium is described, whereby said matrix has a pore size of between 1.5 and 30 nm and has amorphous walls with a thickness of between 1 and 30 nm, said elementary spherical particles having a maximum diameter of 10 μm. Said material can also contain zeolitic nanocrystals that are trapped within said mesostructured matrix.
Owner:INST FR DU PETROLE

Zeolite composite, method for making and catalytic application thereof

A catalytic material includes microporous zeolites supported on a mesoporous inorganic oxide support. The microporous zeolite can include zeolite Beta, zeolite Y (including “ultra stable Y”—USY), mordenite, Zeolite L, ZSM-5, ZSM-11, ZSM-12, ZSM-20, Theta-1, ZSM-23, ZSM-34, ZSM-35, ZSM-48, SSZ-32, PSH-3, MCM-22, MCM-49, MCM-56, ITQ-1, ITQ-2, ITQ-4, ITQ-21, SAPO-5, SAPO-11, SAPO-37, Breck-6, ALPO4-5, etc. The mesoporous inorganic oxide can be e.g., silica or silicate. The catalytic material can be further modified by introducing some metals e.g. aluminum, titanium, molybdenum, nickel, cobalt, iron, tungsten, palladium and platinum. It can be used as catalysts for acylation, alkylation, dimerization, oligomerization, polymerization, hydrogenation, dehydrogenation, aromatization, isomerization, hydrotreating, catalytic cracking and hydrocracking reactions.
Owner:ABB LUMMUS GLOBAL INC

Hollow-structured mesoporous silica material and preparation process

A hollow-structured mesoporous silica material composed of hollow silica particles that have a shell having radial-arrayed channels, and a process for its preparation. The thin-shell type of mesoporous materials with different morphologies are prepared by growing and synthesizing mesoporous silica on the surface of calcium carbonate nanoparticles with different shapes as inorganic templates, and then removing the inorganic templates. The hollow-structure mesoporous silica material can be used in many fields such as the preparation of catalyst, pesticide and optical fiber.
Owner:BEIJING UNIV OF CHEM TECH +1

AEI-Type zeolite, its synthesis and its use in the conversion of oxygenates to olefins

A crystalline material is described that has an AEI framework type, wherein the material, in its calcined, anhydrous form, has a composition involving the molar relationship:(n)X2O3:YO2,wherein X is a trivalent element, Y is a tetravalent element n is from 0 to less than 0.01. The material is normally synthesized in a halide, typically a fluoride, medium and exhibits activity and selectivity in the conversion of methanol to lower olefins, especially ethylene and propylene.
Owner:EXXONMOBIL CHEM PAT INC +1

Chabazite-type molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins

The synthesis of a crystalline material, in particular a high silica zeolite, having a chabazite-type framework is aided by the addition to the synthesis mixture of seeds of an AEI framework-type material. The chabazite-type product has a relatively small crystal size and exhibits activity and selectivity in the conversion of methanol to lower olefins, especially ethylene and propylene.
Owner:EXXONMOBIL CHEM PAT INC +1

Silicon dioxide mesoporous material and its preparing method

The mesoporous silica material consists of hollow silica grains with radically radial arranged hole canal in the wall. The present invention also provides the preparation process of the said mesoporous silica material, and the preparation process includes adopting calcium carbonate in different forms as inorganic template; growing and synthesizing mesoporous material on the surface and subsequent eliminating the inorganic template to obtain thin shell type mesoporous material in different forms. The present invention also provides the application of the mesoporous silica material in preparing catalyst, pesticide and optical fiber.
Owner:XIAMEN NANOTECH +1

High organic group content-periodic mesoporous organosilicas (HO-PMO's)

The present invention provides a new class of organic / inorganic hybrid materials having [ER]n rings interconnected by E′ atoms. In an embodiment a class of materials called high organic group content periodic mesoporous organosilicas (HO-PMO's) with [SiR]3 rings interconnected by O atoms is described. The measured dielectric, mechanical and thermal properties of the materials suggest that an increased organic content achieved by the [SiR]3 rings of a high organic group content periodic mesoporous organosilica leads to superior materials properties potentially useful for a wide range of applications including microelectronics, separation, catalysis, sensing, optics or electronic printing.
Owner:LANDSKRON KAI MANFRED MARTIN +3

Ultra-stable lamellar mesoporous silica compositions and process for the preparation thereof

Novel lamellar mesoporous silica compositions which can contain functional inorganic elements and organic functional groups as part of the lamellar silica framework structure are described. The compositions are prepared using gemini amine surfactants as templates or structure directing agents. The compositions have novel high temperature and hydrothermal stability and unique fundamental particle structures.
Owner:BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIV

Mesoporous material with active metals

A process for treating organic compounds includes providing a composition which includes a substantially mesoporous structure of refractory oxide containing at least 97% by volume of pores having a pore size ranging from about 15 Å to about 30 Å and having a micropore volume of at least about 0.01 cc / g, wherein the mesoporous structure has incorporated therewith at least about 0.02% by weight of at least one catalytically and / or chemically active heteroatom selected from the group consisting of Al, Ti, V, Cr, Zn, Fe, Sn, Mo, Ga, Ni, Co, In, Zr, Mn, Cu, Mg, Pd, Pt and W, and the catalyst has an X-ray diffraction pattern with one peak at 0.3° to about 3.5° at 2 theta (θ). The catalyst is contacted with an organic feed under reaction conditions wherein the treating process is selected from alkylation, acylation, oligomerization, selective oxidation, hydrotreating, isomerization, demetalation, catalytic dewaxing, hydroxylation, hydrogenation, ammoximation, isomerization, dehydrogenation, cracking and adsorption.
Owner:LUMMUS TECH INC

Zeolite nano-crystal suspension, zeolite nano-crystal production method, zeolite nano-crystal suspension production method, and zeolite thin film

A zeolite suspension contains MEL-type zeolite nanocrystals as a principal component. A method for the production of MEL-type zeolite nanocrystals includes the steps of aging a synthesized solution comprising TEOS, TBAOH, water and alcohol and subjecting the aged solution to hydrothermal crystallization treatment at a predetermined temperature. A method for the production of a zeolite suspension includes the steps of aging a synthesized solution comprising TEOS, TBAOH, water and alcohol, subjecting the aged solution to hydrothermal crystallization treatment to produce MEL-type zeolite nanocrystals and mixing a composition having a surfactant dissolved in at least one organic solvent or a mixed solvent of alcohol-based organic solvents, amide-based organic solvents and ketone-based organic solvents with a zeolite nano-crystal suspension containing the MEL-type zeolite nanocrystals to produce a zeolite suspension.
Owner:NAT INST OF ADVANCED IND SCI & TECH +1

Chabazite-type molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins

The synthesis of a crystalline material, in particular a high silica zeolite, having a chabazite-type framework is aided by the addition to the synthesis mixture of seeds of an AEI framework-type material. The chabazite-type product has a relatively small crystal size and exhibits activity and selectivity in the conversion of methanol to lower olefins, especially ethylene and propylene.
Owner:EXXONMOBIL CHEM PAT INC +1

Chabazite-containing molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins

A crystalline material substantially free of framework phosphorus and comprising a CHA framework type molecular sieve with stacking faults or at least one intergrown phase of a CHA framework type molecular sieve and an AEI framework type molecular sieve, wherein said material, in its calcined, anhydrous form, has a composition involving the molar relationship: (n)X2O3:YO2, wherein X is a trivalent element; Y is a tetravalent element; and n is from 0 to about 0.5. The material exhibits activity and selectivity in the conversion of methanol to lower olefins, especially ethylene and propylene.
Owner:EXXONMOBIL CHEM PAT INC +1

Mesoporous material with active metals

A process for treating organic compounds includes providing a composition which includes a substantially mesoporous structure of silica containing at least 97% by volume of pores having a pore size ranging from about 15 Å to about 30 Å and having a micropore volume of at least about 0.01 cc / g, wherein the mesoporous structure has incorporated therewith at least about 0.02% by weight of at least one catalytically and / or chemically active heteroatom selected from the group consisting of Al, Ti, V, Cr, Zn, Fe, Sn, Mo, Ga, Ni, Co, In, Zr, Mn, Cu, Mg, Pd, Pt and W, and the catalyst has an X-ray diffraction pattern with one peak at 0.3° to about 3.5° at 2θ. The catalyst is contacted with an organic feed under reaction conditions wherein the treating process is selected from alkylation, acylation, oligomerization, selective oxidation, hydrotreating, isomerization, demetalation, catalytic dewaxing, hydroxylation, hydrogenation, ammoximation, isomerization, dehydrogenation, cracking and adsorption.
Owner:SHAN ZHIPING +5

Synthesis and use of nanocrystalline zeolites

InactiveUS20070071666A1High yieldMore consistent crystal sizeNitrous oxide captureMaterial nanotechnologySolventHydrolysis
Embodiments of the present invention relate to a method for synthesizing nanocrystalline zeolites, the method comprising contacting starting products that comprise a solvent, a silicon source, a cation base, an organic template, and an aluminum source, or any combination thereof sufficient to produce a zeolite gel by hydrolysis, heating the zeolite gel sufficient to produce a first batch of zeolite crystals and a first clear solution, separating the first batch of zeolite crystals from the first clear solution, heating the first clear solution sufficient to produce a second batch of zeolite crystals and second clear solution and separating the second batch of zeolite crystals from the second clear solution. In addition, embodiments relate to a method of using nanocrystalline zeolites, the method comprising contacting a nanocrystalline zeolite with a reductant sufficient to produce a nanocrystalline zeolite with adsorbed reductant and exposing the nanocrystalline zeolite with adsorbed reductant to reactant gases sufficient to obtain reaction products and the nanocrystalline zeolite.
Owner:UNIV OF IOWA RES FOUND

Mesoporous inorganic oxide spheres and method of making same

A method of preparing mesoporous inorganic oxide spherical particles includes providing a reaction mixture capable of producing mesoporous inorganic oxide spheres; heating the reaction mixture to produce mesostructured inorganic oxide particles and removing organic material from the mesostructured inorganic oxide particles to form the mesoporous inorganic oxide spherical particles. In one embodiment a reaction mixture includes a proton donor, a source of inorganic oxide, and a source of fluoride. In another embodiment a reaction mixture includes a proton donor, a source of inorganic oxide, and an alcohol. Mesoporous inorganic oxide spheres produced by the method of the present invention are also provided.
Owner:UNIVERSITY OF VERMONT

High silica DDR-type molecular sieve, its synthesis and use

A crystalline material has a DDR framework type and, in its calcined, anhydrous form, has a composition involving the molar relationship:(n)X2O3:YO2,wherein X is a trivalent element, Y is a tetravalent element and n is from 0 to less than 0.01 and wherein the crystals of said material have an average diameter less than or equal to 2 microns. The material is synthesized in the presence of an N-ethyltropanium compound as directing agent.
Owner:EXXONMOBIL CHEM PAT INC

Functionalized zeolite compositions and methods for their preparation and use

Disclosed herein are zeolite compositions comprising structural units of the formulae: wherein “B” and “C” are spacer groups comprising C2 to C20 hydrocarbyl groups; and R1 and R2 independently of each other comprise alkali metal, hydrogen, or C1 to C20 alkyl groups. The zeolite compositions further comprise structural units derived from a heteropolyacid compound of the formula: (M3)3(M4)(M5)12O40; where M3 comprises hydrogen or an alkali metal; M4 comprises phosphorus or silicon, and M5 comprises tungsten or molybdenum. Methods for preparing these zeolite compositions are also disclosed. The zeolite compositions are useful as catalysts for producing bisphenols.
Owner:SABIC GLOBAL TECH BV

Method of the preparation of microporous crystalline molecular sieve possessing mesoporous frameworks

The present invention relates to a method of preparing a microporous crystalline molecular sieve Inorganic gel having mesoporous skeleton, comprising following steps: (a) adding a meso-SDA (meso-Structure Directing Agent) into a gel composition of synthesizing molecular sieve, (b) subjecting the mixture obtained in the above step (a) to crystallization by a hydrothermal reaction, a microwave reaction, a dry-gel synthesis, etc., and (c) removing selectively organic materials from the resulted material obtained in the above step (b) by a calcination or a chemical treatment. Molecular sieve having mesoporous skeleton synthesized by the present invention exhibits, as compared with conventional zeolite, a good molecule diffusion ability and a greatly improved catalytic activity.
Owner:KOREA ADVANCED INST OF SCI & TECH

Stimuli responsive mesoporous materials for control of molecular transport

InactiveUS20050013988A1Increase in inter-pore spacingModulating transportSilicaLayered productsStimuli responsiveChemical physics
The present subject matter relates generally to design, synthesis, and characterization of materials with well-defined porous networks of molecular dimensions in which the size and surface energy of the pores can be externally and reversibly controlled to dynamically modulate the adsorption and transport of molecular species.
Owner:FU QIANG +8

Method for synthesising microparticles

A method for synthesising mesoporous silica microparticles comprising the steps of: —preparing a sol from an ammonium catalysed hydrolysis and condensation reaction of a pre-sol solution comprising a silica precursor and a structure directing agent dissolved in a mixed solvent system comprising an alcohol and water to produce mesoporous particles of silica with an average diameter of up to about 50 μm; hydrothermally treating the particles to increase the pore size; treating the particles to remove residual structure directing agent; and further increasing the pore size using controlled dissolution.
Owner:UNIV COLLEGE CORK NAT UNIV OF IRELAND CORK

Zeolite nano-crystal suspension, zeolite nano-crystal production method, zeolite nano-crystal suspension production method, and zeolite thin film

A zeolite suspension contains MEL-type zeolite nanocrystals as a principal component. A method for the production of MEL-type zeolite nanocrystals includes the steps of aging a synthesized solution comprising TEOS, TBAOH, water and alcohol and subjecting the aged solution to hydrothermal crystallization treatment at a predetermined temperature. A method for the production of a zeolite suspension includes the steps of aging a synthesized solution comprising TEOS, TBAOH, water and alcohol, subjecting the aged solution to hydrothermal crystallization treatment to produce MEL-type zeolite nanocrystals and mixing a composition having a surfactant dissolved in at least one organic solvent or a mixed solvent of alcohol-based organic solvents, amide-based organic solvents and ketone-based organic solvents with a zeolite nano-crystal suspension containing the MEL-type zeolite nanocrystals to produce a zeolite suspension.
Owner:NAT INST OF ADVANCED IND SCI & TECH +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products