Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

281results about "Molecular-sieve silicates" patented technology

Hierarchical porous titanium-silicon molecular sieve as well as preparation method thereof and olefin epoxidation method

The invention relates to a hierarchical porous titanium-silicon molecular sieve as well as a preparation method thereof and an olefin epoxidation method. The hierarchical porous titanium-silicon molecular sieve has a grain size of 600-700 nm, has relative crystallinity of 55-64%, has a specific surface area of 660-725 m<2>/g, has a total pore volume of 0.55-0.7 cm<3>/g, and has a mesoporous volumeof 0.3-0.5 cm<3>/g; the volumes of pores with the pore diameters of 0.5-2 nm of the hierarchical porous titanium-silicon molecular sieve account for 15-36% of the total pore volume, the volumes of pores with the pore diameters of 2-4 nm account for 1-25% of the total pore volume, and the volumes of the pores with the pore diameters of 4-16 nm account for 20-45% of the total pore volume, and the volumes of the pores with the pore diameters greater than 16 nm account for 20% or lower of the total pore volume. The hierarchical porous titanium-silicon molecular sieve disclosed by the invention isgreater in mesoporous volume, is higher in proportion of the total pore volume, and can remarkably increase an olefin conversion rate and can improve selectivity of alkyleneoxide while used for olefin oxidization reaction.
Owner:CHINA PETROLEUM & CHEM CORP +1

Method for modifying TS (Titanium silicalite)-1 based on mixed liquor of quaternary ammonium salt and inorganic base

The invention belongs to the technical field of inorganic chemicals synthesis and relates to a method for modifying titanium silicalite. The method is characterized by comprising the following steps: preprocessing the TS (titanium silicalite)-1; modifying the preprocessed TS-1 by mixed liquor containing quaternary ammonium salt and inorganic base, wherein the quaternary ammonium salt refers to tetrapropyl ammonium fluoride, tetrapropylammonium chloride, tetrapropylammonium bromide, tetrapropylammonium iodide and a mixture of tetrapropyl ammonium fluoride, tetrapropylammonium chloride, tetrapropylammonium bromide and tetrapropylammonium iodide, and the inorganic base refers to lithium hydroxide, sodium hydroxide, potassium hydroxide and a mixture of lithium hydroxide, sodium hydroxide and potassium hydroxide; and postprocessing the modified TS-1. The method for modifying the titanium silicalite has general applicability, and is suitable for TS-1 molecular sieves synthesized by various methods, in particular the TS-1 molecular sieves synthesized by inexpensive systems; and the catalytic performance of epoxidation of gas phase and liquid phase propylenes of the TS-1 molecular sieves can be simultaneously improved.
Owner:DALIAN UNIV OF TECH

Titanium silicalite molecular sieve, synthetic method and application of titanium silicalite molecular sieve, and cyclic ketone oxidation method

The invention relates to the field of catalytic materials and in particular provides a titanium silicalite molecular sieve, a synthetic method and application of the titanium silicalite molecular sieve. The titanium silicalite molecular sieve is composed of the following elements in percentage by mass: 0.01-5% of precious metals, silicon, 0.02-8% of titanium and oxygen, wherein the I960/I550 valueis 0.6-0.9; the U480/U330 value is 0.5-5; and the N-116/N-112 value is 0.01-0.2. The invention further provides a cyclic ketone oxidation method. The cyclic ketone oxidation method comprises the following step: contacting cyclic ketone, an oxidizing agent and a catalyst, wherein the catalyst contains the titanium silicalite molecular sieve disclosed by the invention. Compared with the prior art,the titanium silicalite molecular sieve disclosed by the invention has the advantages that diffusion of the reactants and product is facilitated in an oxidation reaction, so that oxidative activity isfully achieved, and the selectivity is improved. For example, when applied to a reaction in which ring molecules, particularly cyclic ketone molecules, participate or are produced, the titanium silicalite molecular sieve can achieve excellent catalytic effects. Moreover, filtration and separation of the catalyst after the reaction can be further facilitated, and industrialized application is easily realized.
Owner:CHINA PETROLEUM & CHEM CORP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products