Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1373results about "Carbonyl compound preparation by condensation" patented technology

Functionalized ionic liquids, and methods of use thereof

One aspect of the present invention relates to ionic liquids comprising a pendant Bronsted-acidic group, e.g., a sulfonic acid group. Another aspect of the present invention relates to the use of an ionic liquid comprising a pendant Bronsted-acidic group to catalyze a Bronsted-acid-catalyzed chemical reaction. A third aspect of the present invention relates to ionic liquids comprising a pendant nucleophilic group, e.g., an amine. Still another aspect of the present invention relates to the use of an ionic liquid comprising a pendant nucleophilic group to catalyze a nucleophile-assisted chemical reaction. A fifth aspect of the present invention relates to the use of an ionic liquid comprising a pendant nucleophilic group to remove a gaseous impurity, e.g., carbon dioxide, from a gas, e.g., sour natural gas.
Owner:UNIV OF SOUTH ALABAMA

Polyamine analog conjugates and quinone conjugates as therapies for cancers and prostate diseases

Peptide conjugates in which cytocidal and cytostatic agents, such as polyamine analogs or naphthoquinones, are conjugated to a polypeptide recognized and cleaved by enzymes such as prostate-specific antigen (PSA) and cathepsin B are provided, as well as compositions comprising these conjugates. Methods of using these conjugates in the treatment of prostate diseases are also provided.
Owner:CELLGATE

Zeolite composite, method for making and catalytic application thereof

A catalytic material includes microporous zeolites supported on a mesoporous inorganic oxide support. The microporous zeolite can include zeolite Beta, zeolite Y (including “ultra stable Y”—USY), mordenite, Zeolite L, ZSM-5, ZSM-11, ZSM-12, ZSM-20, Theta-1, ZSM-23, ZSM-34, ZSM-35, ZSM-48, SSZ-32, PSH-3, MCM-22, MCM-49, MCM-56, ITQ-1, ITQ-2, ITQ-4, ITQ-21, SAPO-5, SAPO-11, SAPO-37, Breck-6, ALPO4-5, etc. The mesoporous inorganic oxide can be e.g., silica or silicate. The catalytic material can be further modified by introducing some metals e.g. aluminum, titanium, molybdenum, nickel, cobalt, iron, tungsten, palladium and platinum. It can be used as catalysts for acylation, alkylation, dimerization, oligomerization, polymerization, hydrogenation, dehydrogenation, aromatization, isomerization, hydrotreating, catalytic cracking and hydrocracking reactions.
Owner:ABB LUMMUS GLOBAL INC

Anti-oxidant macromonomers and polymers and methods of making and using the same

Methods of preparing an antioxidant polymer are described comprising polymerizing macromonomers that comprise an antioxidant. By having the antioxidant as part of the macromonomer, a polymer with a higher density of antioxidants is prepared more efficiently than coordinating antioxidants to an already formed polymer. The methods of polymerization also encompass copolymerization wherein different macromonomers comprising different antioxidants may be used. Alternatively, the other macromonomer, or monomer, may not include an antioxidant depending on the intended use of the copolymer and desired properties. The macromonomer comprising a antioxidant may comprise more than one antioxidant which may be the same or different. In one embodiment, the macromonomer is benzene or olefin based, wherein the benzene or olefin is substituted with an antioxidant.
Owner:POLNOX CORP

Anti-oxidant macromonomers and polymers and methods of making and using the same

InactiveUS20060041094A1Not easily oxidizedShort term and longer term stability towards oxidationOrganic compound preparationCarbonyl compound preparation by condensationAntioxidantMacromonomer
The present invention relates to macromonomer compounds possessing antioxidant properties, antioxidant polymers comprising the antioxidant macromonomers as a recurring unit, and methods of inhibiting oxidation in a substance comprising contacting the substance with the antioxidant polymers. In one embodiment, substantially all of the recurring macromonomeric units of the antioxidant polymers comprise an antioxidant moiety. In another embodiment, all of the recurring macromonomer units of the antioxidant polymers comprise an antioxidant moiety. The method of the present invention, yields antioxidant polymers with substantially all of the recurring units comprising an antioxidant moiety. These antioxidant polymers have greater bulk antioxidative properties than previously known.
Owner:POLNOX CORP

Chemical processing microsystems comprising high-temperature parallel flow microreactors

A chemical processing microsystem useful for identifying and optimizing materials (e.g., catalysts) that enhance chemical processes or for characterizing and / or optimizing chemical processes is disclosed. The chemical processing microsystem comprises a plurality of microreactors 600 and, in a preferred embodiment, a plurality of microseparators 900 integral with the chemical processing microsystem 10. The microreactors 600 are preferably diffusion-mixed microreactors formed in a plurality of laminae that include a modular, interchangeable candidate-material array 100. The material array 100 comprises a plurality of different candidate materials (e.g., catalysts), preferably arranged at separate, individually addressable portions of a substrate (e.g., wafer). The microseparators 900 are similarly formed in a plurality of laminae that include a modular, interchangeable adsorbent array 700. The adsorbent array 700 comprises one or more adsorbents, preferably arranged at separate, individually addressable portions of a substrate to spatially correspond to the plurality of different candidate materials. Modular microfluidic distribution systems are also disclosed. The chemical processing microsystem can be integrated into a material evaluation system that enables a comprehensive combinatorial material science research program.
Owner:FREESLATE

Mesoporous material with active metals

A process for treating organic compounds includes providing a composition which includes a substantially mesoporous structure of silica containing at least 97% by volume of pores having a pore size ranging from about 15 Å to about 30 Å and having a micropore volume of at least about 0.01 cc / g, wherein the mesoporous structure has incorporated therewith at least about 0.02% by weight of at least one catalytically and / or chemically active heteroatom selected from the group consisting of Al, Ti, V, Cr, Zn, Fe, Sn, Mo, Ga, Ni, Co, In, Zr, Mn, Cu, Mg, Pd, Pt and W, and the catalyst has an X-ray diffraction pattern with one peak at 0.3° to about 3.5° at 2θ. The catalyst is contacted with an organic feed under reaction conditions wherein the treating process is selected from alkylation, acylation, oligomerization, selective oxidation, hydrotreating, isomerization, demetalation, catalytic dewaxing, hydroxylation, hydrogenation, ammoximation, isomerization, dehydrogenation, cracking and adsorption.
Owner:ABB LUMMUS GLOBAL INC

Materials useful as electrolytic solutes

The invention concerns novel ionic compounds with low melting point whereof the onium type cation having at least a heteroatom such as N, O, S or P bearing the positive charge and whereof the anion includes, wholly or partially, at least an ion imidide such as (FX1O)N−(OX2F) wherein X1 and X2 are identical or different and comprise SO or PF, and their use as solvent in electrochemical devices. Said composition comprises a salt wherein the anionic charge is delocalised, and can be used, inter alia, as electrolyte.
Owner:ACEP +2

Surface modified carbonaceous materials

Grafting a polymer at the surface of a carbonated material containing carboxyl, amine and / or hydroxyl functions at its surface. This material is suspended in a solution comprising the polymer to be grafted, which includes a carboxyl, amine and / or hydroxyl function, the solution also comprising a solvent of the polymer. This is followed by a treatment causing dehydration into a carboxyl function, an amide and / or hydroxyl function and the polymer is thus grafted on the carbonated material by means of ester or amide bonds. Utilization in the cathode or anode of an electrochemical generator, in a polymer material with low polarity, in an ink, and as a conductive deposit on flexible plastic used as electrical contact, electromagnetic protection and antistatic protection.
Owner:HYDRO QUEBEC CORP +1

Ionic liquid catalyst having enhanced activity

A process for producing acidic ionic liquid catalyst having enhanced activity comprising combining fresh acidic ionic liquid catalyst, a metal and a Broensted acid in a reaction zone for a time sufficient to increase the activity of the ionic liquid catalyst is disclosed. A process for producing acidic ionic liquid catalyst having enhanced activity comprising the steps of combining fresh ionic liquid catalyst, a metal and HCl in a reaction zone for a time sufficient to increase the activity of the fresh ionic liquid catalyst; removing reaction product from the reaction zone and recovering at least a portion of the treated ionic liquid catalyst is also disclosed.
Owner:CHEVROU USA INC

Production of gasoline from fermentable feedstocks

Methods are disclosed for forming heptan-4-one, and, optionally, heptan-4-ol, from fermentable sugars. The sugars are fermented using a bacteria or yeast that predominantly forms butyric acid. The butyric acid is subjected to catalytic ketonization conditions to form heptan-4-one, with concomitant loss of water and carbon dioxide. The heptan-4-one can be subjected to catalytic hydrogenation to form heptan-4-ol, an either of these can be included in gasoline compositions. In one aspect, the fermentable sugars are derived from lignocellulosic materials such as wood products, switchgrass, or agricultural wastes, which are delignified to form lignin, cellulose and hemicellulose. The cellulose and hemicellulose can be depolymerized to form glycose and xylose, either or both of which can be fermented by the bacteria. Thus, the methods described herein can convert biomass to a fuel composition or fuel additive, which can be used in a conventional gasoline engine, unlike traditional fuels such as ethanol or biodiesel.
Owner:CPS BIOFUELS INC

Process for Production of Azulene Derivatives and Intermediates for the Synthesis of the Same

A process for producing an azulene derivative useful as a Na+-glucose cotransporter inhibitor, which is high in yield, is simple in operation, is low in cost, is suited for environmental protection, and is advantageous industrially, the process being characterized by reducing and deprotecting at least one compound selected from penta-acyl compounds and tetra-acyl compounds or salts thereof to obtain a C-glycoside compound; and a useful intermediate for synthesis of such an azulene derivative, obtained in the course of the above process.
Owner:ASTELLAS PHARMA INC +1

Liquid crystal compound having high optical anisotropy and negative dielectric anisotropy, liquid crystal composition including the same and liquid crystal display including the liquid crystal composition

Provided are a liquid crystal compound represented by formula 1, a liquid crystal composition including the same, and a liquid crystal display including the liquid crystal composition: wherein X1, X2, R1, R2, L and are the same as described in specification. High optical anisotropy and negative dielectric anisotropy can be achieved by the use of the liquid crystal composition including the liquid crystal compound.
Owner:SAMSUNG ELECTRONICS CO LTD

Methods for the synthesis of zeazanthin

A method used for synthesizing intermediates for use in the synthesis of carotenoids and carotenoid analogs, and / or carotenoid derivatives. In some embodiments, the invention includes methods for synthesizing optically active intermediates useful for the synthesis of optically active carotenoids. Synthesis of optically active carotenoids, in one embodiment, may be accomplished by forming an optically active dihydroxy intermediate from ketoisopherone. The optically active dihydroxy intermediate may be converted into optically active zeaxanthin.
Owner:CARDAX PHARMA

Carbon doped tin disulphide and methods for synthesizing the same

Disclosed herein are carbon doped tin disulphide (C—SnS2) and other SnS2 composites as visible light photocatalyst for CO2 reduction to solar fuels. The in situ carbon doped SnS2 photocatalyst provide higher efficiency than the undoped pure SnS2. Also disclosed herein are methods for preparing the catalysts.
Owner:ACAD SINIC +1

Mesoporous material with active metals

A process for treating organic compounds includes providing a composition which includes a substantially mesoporous structure of silica containing at least 97% by volume of pores having a pore size ranging from about 15 Å to about 30 Å and having a micropore volume of at least about 0.01 cc / g, wherein the mesoporous structure has incorporated therewith at least about 0.02% by weight of at least one catalytically and / or chemically active heteroatom selected from the group consisting of Al, Ti, V, Cr, Zn, Fe, Sn, Mo, Ga, Ni, Co, In, Zr, Mn, Cu, Mg, Pd, Pt and W, and the catalyst has an X-ray diffraction pattern with one peak at 0.3° to about 3.5° at 2θ. The catalyst is contacted with an organic feed under reaction conditions wherein the treating process is selected from alkylation, acylation, oligomerization, selective oxidation, hydrotreating, isomerization, demetalation, catalytic dewaxing, hydroxylation, hydrogenation, ammoximation, isomerization, dehydrogenation, cracking and adsorption.
Owner:SHAN ZHIPING +5

Methods and apparatus for fluid distribution in microfluidic systems

A chemical processing microsystem useful for identifying and optimizing materials (e.g., catalysts) that enhance chemical processes or for characterizing and / or optimizing chemical processes is disclosed. The chemical processing microsystem comprises a plurality of microreactors 600 and, in a preferred embodiment, a plurality of microseparators 900 integral with the chemical processing microsystem 10. The microreactors 600 are preferably diffusion-mixed microreactors formed in a plurality of laminae that include a modular, interchangeable candidate-material array 100. The material array 100 comprises a plurality of different candidate materials (e.g., catalysts), preferably arranged at separate, individually addressable portions of a substrate (e.g., wafer). The microseparators 900 are similarly formed in a plurality of laminae that include a modular, interchangeable adsorbent array 700. The adsorbent array 700 comprises one or more adsorbents, preferably arranged at separate, individually addressable portions of a substrate to spatially correspond to the plurality of different candidate materials. Modular microfluidic distribution systems are also disclosed. The chemical processing microsystem can be integrated into a material evaluation system that enables a comprehensive combinatorial material science research program.
Owner:FREESLATE

Functionalized ionic liquids, and methods of use thereof

One aspect of the present invention relates to ionic liquids comprising a pendant Bronsted-acidic group, e.g., a sulfonic acid group. Another aspect of the present invention relates to the use of an ionic liquid comprising a pendant Bronsted-acidic group to catalyze a Bronsted-acid-catalyzed chemical reaction. A third aspect of the present invention relates to ionic liquids comprising a pendant nucleophilic group, e.g., an amine. Still another aspect of the present invention relates to the use of an ionic liquid comprising a pendant nucleophilic group to catalyze a nucleophile-assisted chemical reaction. A fifth aspect of the present invention relates to the use of an ionic liquid comprising a pendant nucleophilic group to remove a gaseous impurity, e.g., carbon dioxide, from a gas, e.g., sour natural gas.
Owner:UNIV OF SOUTH ALABAMA

Method for synthesizing cosmetic-grade 1,3-butanediol

ActiveCN105585448ACondensation reaction is mildReduced risk of deep condensationOrganic compound preparationHydroxy compound preparationCrotonaldehydeDistillation
The invention relates to a method for synthesizing cosmetic-grade 1,3-butanediol. The method includes the steps that acetaldehyde and water are mixed evenly and then injected into a reaction kettle, and dilute acetic acid is dripped under the alkaline condition so that the reaction system can be neutralized to be neutral; flashing is carried out, acetaldehyde obtained in distillation is recycled, and distillation residual liquid is 3-hydroxybutanal; obtained 3-hydroxybutanal and a catalyst are mixed evenly, hydrogen pressure is kept, centrifugal separation is carried out on the obtained product to obtain the catalyst for recycling, flashing is carried out on the liquor at 120 DEG C to obtain water and the byproducts ethyl alcohol and crotonaldehyde, and reduced pressure distillation is carried out to obtain coarse 1,3-butanediol; purification is carried out. The process of synthesizing 1,3-butanediol through condensation and hydrogenation reduction of an acetaldehyde liquid phase is improved through the steps, and thus the product 1,3-butanediol meets the quality requirement of the cosmetic industry.
Owner:LIAONING KELONG FINE CHEM

Glucocorticoid mimetics, methods of making them, pharmaceutical compositions, and uses thereof

Compounds of Formula (IA) and Formula (IB)wherein R1, R2, R3, R4, R5, and R6 are as defined herein for Formula (IA) or Formula (IB), or a tautomer, prodrug, solvate, or salt thereof; pharmaceutical compositions containing such compounds, and methods of modulating the glucocorticoid receptor function and methods of treating disease-states or conditions mediated by the glucocorticoid receptor function or characterized by inflammatory, allergic, or proliferative processes in a patient using these compounds.
Owner:BOEHRINGER INGELHEIM PHARMA INC

Multi-orifice zeolite material as well as preparation method and application thereof

The invention provides a multi-orifice zeolite material as well as a preparation method and an application thereof. The preparation method comprises the following steps of: adding cane sugar into a reaction precursor liquid system containing a silicon source, an aluminum source and a structure guiding agent, stirring till a reaction mixture forms a solidified reaction body, aging, and drying to obtain dry gel; carrying out steam auxiliary crystallization treatment on the dry gel to obtain crystallized powder; and burning the powder to remove a carbon material template to obtain the multi-orifice zeolite material. According to the preparation method disclosed by the invention, a synthesizing process is simple, convenient and feasible, a mesoporous template is generated in situ by a cheap reproducible carbon source in a zeolite crystalline process without special treatment, the synthesis cost is saved, and the synthesis process is simplified.
Owner:SHANGHAI INST OF CERAMIC CHEM & TECH CHINESE ACAD OF SCI

Fatty-acid amide hydrolase

The soporific activity of cis-9,10-octadecenoamide and other soporific fatty acid primary amides is neutralized by hydrolysis in the presence of fatty-acid amide hydrolase (FAAH). Hydrolysis of cis-9,10-octadecenoamide by FAAH leads to the formation of oleic acid, a compound without soporific activity. FAAH has be isolated and the gene encoding FAAH has been cloned, sequenced, and used to express recombinant FAAH. Inhibitors of FAAH are disclosed to block the hydrolase activity.
Owner:THE SCRIPPS RES INST

Polyarylene copolymers and proton-conductive membrane

A polyarylene copolymer which comprises (A) from 60 to 3 mol % aromatic compound units having a main chain containing one or more electron-withdrawing groups therein and (B) from 40 to 97 mol % aromatic compound units having a main chain containing no electron-withdrawing groups therein (provided that (A)+(B)=100 mol %), and a proton-conductive membrane comprising the polyarylene copolymer having sulfonic acid groups.
Owner:JSR CORPORATIOON

Catalyst and process for the preparation of unsymmetrical ketones

Carboxylic acid mixtures form unsymmetrical ketones in yields approaching statistical using zirconia catalysts promoted with Group IA and IIA elements. Active catalysts exist in their monoclinic or tetragonal but not cubic form. And the level of promoter loading is generally less than ten percent. The advantages of this catalyst over other ketonization catalysts include its high selectivity to ketones, its low formation of dehydrogenated byproducts, and its stability. The catalyst stability permits its regeneration to remove carbon accumulations by air oxidation. This regeneration restores full catalytic activity.
Owner:EASTMAN CHEM CO

Surface modified carbonaceous materials

Grafting a polymer at the surface of a carbonated material containing carboxyl amine and / or hydroxyl functions at its surface. This material is suspended in a solution comprising the polymer to be grafted, which includes a carboxyl amine and / or hydroxyl function, the solution also comprising a solvent of the polymer. This is followed by a treatment causing dehydration into a carboxyl function, an amide and / or hydroxyl function and the polymer is thus grafted on the carbonated material by means of ester or amide bonds. Utilization in the cathode or anode of an electrochemical generator, in a polymer material with low polarity, in an ink, and as a conductive deposit on flexible plastic used as electrical contact, electromagnetic protection and antistatic protection.
Owner:HYDRO QUEBEC CORP +1

Method for the production of gamma , delta -unsaturated ketones by reacting tertiary allyl alcohols with alkenyl alkyl ethers

PCT No. PCT / EP97 / 06425 Sec. 371 Date Jan. 29, 1999 Sec. 102(e) Date Jan. 29, 1999 PCT Filed Nov. 18, 1997 PCT Pub. No. WO98 / 23570 PCT Pub. Date Jun. 4, 1998An improved process is described for preparing gamma , delta -unsaturated ke-tones, which are in demand as aroma substances and intermediates for vitamins and carotenoids, by reacting tertiary allyl alcohols and alkenyl alkyl ethers in the presence of acid catalysts at elevated temperature, which comprises carrying out the reaction in the presence of a phosphorus derivative of the formula IV where A and B are each a branched or unbranched alkyl or alkoxy having from 1 to 10 carbons, a substituted or unsubstituted aryl, cycloalkyl, aryloxy or cycloaryloxy; A can additionally be -H or -OH or A and B together are a substituted or unsubstituted tetramethylene or pentamethylene or substituted or unsubstituted phenyl-1,2-diol or 1,1'-binaphthyl-2,2'-diol.
Owner:BASF AG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products