Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

156 results about "Space Shuttle" patented technology

The Space Shuttle was a partially reusable low Earth orbital spacecraft system that was operated from 1981 to 2011 by the U.S. National Aeronautics and Space Administration (NASA) as part of the Space Shuttle program. Its official program name was Space Transportation System (STS), taken from a 1969 plan for a system of reusable spacecraft of which it was the only item funded for development. The first of four orbital test flights occurred in 1981, leading to operational flights beginning in 1982. In addition to the prototype whose completion was cancelled, five complete Shuttle systems were built and used on a total of 135 missions from 1981 to 2011, launched from the Kennedy Space Center (KSC) in Florida. Operational missions launched numerous satellites, interplanetary probes, and the Hubble Space Telescope (HST); conducted science experiments in orbit; and participated in construction and servicing of the International Space Station. The Shuttle fleet's total mission time was 1322 days, 19 hours, 21 minutes and 23 seconds.

High heat flow simulator for spacecraft vacuum heat tests

InactiveCN103600851ASolve high temperatureSolve the technical difficulties of high heat flow simulationCosmonautic condition simulationsAircraft components testingHeat fluxInfrared lamp
The invention discloses a high-temperature high heat flow simulator for spacecraft vacuum heat tests in a space environment simulating chamber. The simulator mainly comprises infrared light arrays, a high-temperature insulation component unit, moving units, a temperature measuring unit and a temperature controlling unit. A plurality of infrared lights in the infrared light arrays are provided with reflective screens, the infrared lights are arrayed and combined to form the infrared light arrays according to requirements of heat flux density and uniformity, baffles surround the periphery of the infrared light arrays, high-temperature multi-layer insulation components are mounted among the infrared lights, a mounting baseplate and the baffles, and a high temperature region is limited in region formed through specimen irradiated face and the infrared light array high-temperature insulation components. According to the high-temperature high heat flow simulator, by means of unique design of the infrared light arrays and the high-temperature insulation components, technical difficulties of high-temperature high heat flow simulation when vacuum heat tests are performed on a spacecraft are solved, high-temperature high heat flow space environment can be simulated when vacuum heat tests are performed on spacecrafts in series of deep space exploration and space shuttles, and the spacecrafts can be tested.
Owner:BEIJING INST OF SPACECRAFT ENVIRONMENT ENG

Lightweight rigid ceramic heat-insulation tile and manufacture method thereof

The invention relates to lightweight rigid ceramic heat-insulation tile and a manufacture method thereof. The lightweight rigid ceramic heat-insulation tile comprises the following components: ceramic fibers, starch accounting for 0.05-15wt% of the ceramic fibers, a sintering aid and a sunscreen, wherein the ceramic fibers are composed of 50-100wt% of quartz fibers and 0-50wt% of porzite fibers; the sintering aid is boron nitride accounting for 0.01-15wt% of the ceramic fibers; and the sunscreen is silicon carbide accounting for 0-20wt% of the ceramic fibers. According to the invention, the quartz fibers and porzite fibers are utilized as raw materials to manufacture the ceramic heat-insulation tile with good heat-insulation and mechanical properties through fiber dispersion, wet blank shaping, high-temperature sintering and like. The obtained ceramic heat-insulation tile has the advantages that the density is 0.15-0.80 g / cm<3>, the thermal conductivity at room temperature is 0.045W / m.K, and the plane tensile strength is larger than 0.4 MPa. According to the invention, the porzite fibers are utilized to substitute for aluminum oxide fibers and aluminum borosilicate fibers, and the performance of the ceramic heat-insulation tile is approximate to that of the ceramic heat-insulation tiles used by the space shuttles in America.
Owner:AEROSPACE RES INST OF MATERIAL & PROCESSING TECH

Preparation method of fibrous nano silicon carbide

InactiveCN103496703APlay the role of "template"High yieldMaterial nanotechnologySilicon carbideFiberRocket
The invention discloses a preparation method of fibrous nano silicon carbide. The preparation method is characterized by comprising the following steps: taking a carbon source and chrysotile asbestos of which the main chemical ingredient is silicon dioxide according to the molar ratio of carbon to silicon dioxide being (0.3-3):1; separately grinding the carbon source and chrysotile asbestos, evenly mixing to obtain a mixture; putting the mixture into a reaction device, vacuumizing, and continuously introducing argon in the reaction device; heating to 1350-2500 DEG C and carrying out thermal reaction for 0.2-6 hours; cooling to room temperature, stopping introduction of argon; collecting the reduction product, and grinding into fine powder which is the fibrous nano silicon carbide powder product. The preparation method has the advantages that raw materials are easily availably and equipment and technology are simple; moreover, the preparation method is friendly to environment and high in productivity. The prepared fibrous nano silicon carbide has good performances, can be widely applied to high-tech equipments such as nose cones of space shuttles, brakes of airplanes and racing bicycles, rocket nozzles, satellite antennas, guided missiles and the like, and also has broad use in nanometer microsystems.
Owner:SOUTHWEAT UNIV OF SCI & TECH

Device for testing flow of lubricating oil nozzle of engine

The invention relates to a device for testing the flow of a lubricating oil nozzle of an engine, belonging to the technical field of space shuttle engines. The device comprises an oil receiving cup, a first switching pipe, a second switching pipe, a third switching pipe, a working room, an oil return tank, an oil collecting pipe, a two-position three-way electromagnetic valve, an oil metering cup, a first electromagnetic valve, a second electromagnetic valve, an oil return pump, an oil supply pump and a combined oil tank, wherein the combined oil tank comprises an oil collector, a vacuum oil tank, a consumption oil tank, a third electromagnetic valve, a fourth electromagnetic valve and a vacuum pump. With the structure of a vacuum combined split oil tank, the device can remove air dissolved in lubricating oil. An upper and a lower split oil tanks are used, wherein the lower oil tank is used for supplying oil, and the upper vacuum oil tank is used for removing the dissolved air. For the compatibility of different types of nozzles, the designed oil receiving cup can flex and rotate according to different oil receiving distances and angles, can be used for testing different types of nozzles and reduce the labor intensity of workers.
Owner:SHENYANG LIMING AERO-ENGINE GROUP CORPORATION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products