Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1048results about How to "Inhibitory complex" patented technology

Perovskite thin-film solar cell with three-dimensional ordered mesopore support layer

The invention provides a perovskite thin-film solar cell with a three-dimensional ordered mesopore support layer. The perovskite thin-film solar cell with the three-dimensional ordered mesopore support layer comprises a transparent conducting substrate, a compact layer, the three-dimensional ordered mesopore support layer, a perovskite light absorbing layer, a hole transporting layer and a counter electrode layer which are sequentially laminated to form a laminating layer, wherein the three-dimensional ordered mesopore support layer is filled with the perovskite light absorbing layer, the hole transporting layer and the counter electrode layer; the three-dimensional ordered mesopore support layer is of a three-dimensional ordered mesopore material prepared by using water-soluble colloidal crystal microspheres as a template; the aperture dimension of the three-dimensional ordered mesopore support layer depends on the dimension of the water-soluble colloidal crystal microspheres; and the perovskite light absorbing layer is prepared through materials of an ABXmY3-m type crystal structure. The perovskite thin-film solar cell has the advantages that the three-dimensional ordered mesopore support layer of which the aperture is uniform and adjustable, the specific surface area is relatively large and a good electronic transmission channel is arranged is provided and reaches high photoelectric conversion efficiency and outstanding repeatability and stability; and the preparation method has the advantages that the conditions are mild and controllable, the preparation method is simple and needs a little cost, and large-scale commercial production can be popularized.
Owner:TIANJIN UNIVERSITY OF TECHNOLOGY

Silver-modified carbon nitride composite photocatalytic material and preparation method thereof

The invention relates to a silver-modified carbon nitride composite photocatalytic material and a preparation method thereof. The preparation method comprises: dissolving dicyanodiamide or melamine in deionized water or dimethyl sulfoxide and performing ultrasonic dispersing, so as to obtain a dicyanodiamide or melamine dispersion liquid; dissolving silver nitrate in deionized water and stirring uniformly, so as to obtain a silver nitrate solution; slowly dropwise adding the silver nitrate solution into the above dicyanodiamide or melamine dispersion liquid under the condition of magnetic stirring, and continuing stirring the solution, so as to obtain a mixed precursor solution; using anhydrous ethanol and deionized water repeatedly wash the obtained mixed precursor solution for multiple times, and performing vacuum drying; and putting the obtained product in a proper crucible and covering, putting in a high-temperature furnace, and sintering for a period under the condition of nitrogen protection, so as to obtain a powdery sample. The advantages comprise that the raw material source is wide, the preparation technology is simple and practicable, and the cost is relatively low; and the prepared composite photocatalytic material has relatively good photocatalytic degradation effect on organic dye rhodamine B under irradiation of visible light.
Owner:JIANGSU UNIV

Bismuth subcarbonate photocatalyst and preparation method thereof

The invention provides a bismuth subcarbonate photocatalyst which is a bismuth subcarbonate nanometer sheet or a microsphere formed by the bismuth subcarbonate nanometer sheet. The bismuth subcarbonate photocatalyst provided by the invention is obtained by carrying out hydrothermal reaction on a bismuth source and soluble carbonate in an aqueous solution, wherein the bismuth source is bismuth citrate or bismuth citrate ammonia. The bismuth subcarbonate photocatalyst takes the bismuth citrate or the bismuth citrate ammonia as the bismuth source, and the nanometer sheet shaped bismuth subcarbonate or the microsphere formed by the bismuth subcarbonate nanometer sheet is obtained in a hydrothermal reaction mode. The morphology obtained by the bismuth subcarbonate photocatalyst can accelerate the separation and transmission of the photoproduction electrons and holes of the bismuth subcarbonate photocatalyst so as to inhibit the composition of the electrons and holes and accelerate the diffusion and transfer of reactants and reaction products; reflection is generated between rays and a nanometer layer; and the use ratio of the light source is increased so as to improve the catalytic activity of the bismuth subcarbonate photocatalyst. An experiment result shows that the removal rate on NO by the bismuth subcarbonate photocatalyst provided by the invention is 20-50%.
Owner:铜陵博雅渡业新材料科技有限公司

Hybrid solar cell with aluminum-doped zinc oxide nanorod as electron transfer layer

A hybrid solar cell with an aluminum-doped zinc oxide nanorod as the electron transfer layer is composed of a transparent conducting glass substrate, the aluminum-doped zinc oxide nanorod electron transfer layer, a layered perovskite-like hybrid material CH3NH3PbX3(wherein X is Cl, or Br or I),2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene hole transfer layer and an Au metal back electrode layer, wherein all the parts form a laminated structure in sequence. The hybrid solar cell with the aluminum-doped zinc oxide nanorod as the electron transfer layer has the advantages that due to the fact that the aluminum-doped zinc oxide nanorod is used as the electron transfer layer in the hybrid solar cell, the specific surface area is large, electron-transport capacity is high, electron-hole combination is effectively restrained, and photoelectric conversion efficiency is high; the manufacturing method and technique are simple, reaction temperature is low, efficiency is high, raw materials are rich, cost is low, and environmental friendliness is achieved. The hybrid solar cell with the aluminum-doped zinc oxide nanorod as the electron transfer layer is suitable for industrialized large-scale production.
Owner:TIANJIN UNIVERSITY OF TECHNOLOGY

Hybrid solar cell with Cs mingling with ZnO as electron transfer layer

Provided is a hybrid solar cell with Cs mingling with ZnO as an electron transfer layer. The hybrid solar cell with the Cs mingling with the ZnO as the electron transfer layer is composed of a transparent conductive glass substrate, a Cs mingling with ZnO nanorod electron transfer layer, layered perovskite hybrid materials CH3NH3PbX3(wherein X is C1, Br or I), a 2, 2', 7 and 7'- four [N, N - two (four - methoxy phenyl) amidogen] - 9, 9' - spirobifluorene hole transport layer and an Au metal back electrode layer which sequentially form a layered structure in a combining mode. The hybrid solar cell with the Cs mingling with the ZnO as the electron transfer layer has the advantages that the Cs mingling with the ZnO as the electron transfer layer is used in the hybrid solar cell, compared with zinc oxide, 2-3 orders of magnitude of electronic transmission capacity are improved, the recombination of electron-hole is effectively constrained, and the photoelectric conversion efficiency is high; the preparing method of the hybrid solar cell is simple in process, low in reaction temperature, high in efficiency, rich in raw material, low in cost, environmentally friendly, free of pollution, and suitable for industrial mass production.
Owner:TIANJIN UNIVERSITY OF TECHNOLOGY

Perovskite solar cell and preparation method thereof

The invention discloses a perovskite solar cell and a preparation method thereof. The perovskite solar cell comprises a transparent conductive substrate, a hole transport layer, a decoration layer, a perovskite layer, an electron transport layer, a barrier layer and a metal electrode. The surfaces of PEDOT: PSS, NiOx and the hole transport layer are decorated by ionic liquid based on imidazole, atomic force microscope graphs before and after the decoration are compared, and the decorated surface appearance is more smooth, which is conducive to inhibiting the compounding of dark current. The perovskite layer is a new perovskite material 3MAI: PbAc2.xH2O (x is not smaller than 0 and is not greater than 3), and is prepared by quickly preheating a substrate and heating a perovskite precursor solution, namely instant heating assisted spray coating technology (HASP) at a low temperature (lower than 100 DEG C), which is conducive to increasing the grain size of perovskite and reducing the defects between perovskite grains so as to greatly improve the efficiency of the perovskite battery. The photoelectric conversion efficiency of the final battery device is greater than 19%, the flexible device efficiency is 10.8%, no hysteresis effect is formed, and thus the preparation method has a broad application prospect.
Owner:CENT SOUTH UNIV

Phenyl ring modified graphite-like carbon nitride photocatalyst, and preparation method and application thereof

The invention belongs to the technical fields of material preparation and photocatalysis, and discloses a phenyl ring modified graphite-like carbon nitride photocatalyst, and a preparation method and an application thereof. The method comprises the following steps: 1, dissolving nitrogen-containing organic micro-molecules and a phenyl ring-containing compound in a solvent, and evaporating the obtained solution until the solution is dry in order to obtain a mixed precursor; and 2, roasting the mixed precursor to obtain the phenyl ring modified graphite-like carbon nitride photocatalyst, wherein the nitrogen-containing organic micro-molecules are one or more of urea and melamine; and the phenyl ring-containing compound is one or more of trimesic acid, phenol, benzoic acid and benzaldehyde. The electron structure of the photocatalyst is changed by phenyl ring modification, so the pi electron delocalization of graphite-like carbon nitride is excited, the absorption of visible lights is improved, compounding of photon-generated carriers is inhibited, and the photocatalytic hydrogen production performance is improved. The method has the advantages of simple preparation, no expensive device and good practical application prospect.
Owner:SOUTH CHINA UNIV OF TECH

Fixed bed inhomogeneous three dimensional electrode photo electrocatalysis reactor

InactiveCN101224401ALow costGive full play to the efficiency of synergistic catalytic oxidationEnergy based chemical/physical/physico-chemical processesWater/sewage treatment by oxidationHigh concentrationFixed bed
The invention relates to a continuous cycle multilayer interval type fixed bed non- homogeneous phase three-dimensional electrode photoelectric catalytic reactor, which includes a reactor shell body, a titanium network anode, a porous graphite cathode, a double layer U-shaped silica tube and an illuminant UV lamp arranged in the silica tube, wherein, a photoelectric catalytic reaction chamber is formed between the graphite cathode and the titanium network anode, a multilayer compartment type fixed bed three-dimensional particle electrode is arranged in the chamber, and the three-dimensional particle electrode material is made by coating nanometer TiO2 on the active carbon particles; a circulating device composed of a fluid reservoir and a pump is arranged between a fluid inlet and a fluid outlet of the reaction chamber. The invention wonderfully integrates the three-dimensional electrode and the photocatalytic technology; the multilayer interval type fixed bed is beneficial to the mass transfer effect and can improve the degradation rate of the system. The invention is highly efficient and rapid and is suitable for the treatment of dyeing waste water that has high concentration and is difficult to degrade. The device has no secondary pollution and more than one reaction device can be connected in series for use, which is mobile and flexible.
Owner:DONGHUA UNIV

Method for preparing TiO2/PS/Fe3O4 magnetic nanoparticle photocatalyst

The invention relates to a method for preparing a TiO2 / PS / Fe3O4 magnetic nanoparticle photocatalyst, comprising the following steps of: (1) preparing oleic acid modified Fe3O4 nanoparticles; (2) preparing an aqueous-phase magnetic fluid; (3) preparing styrene miniemulsion; (4) preparing magnetic polystyrene beads PS / Fe3O; and (5) preparing the magnetic photocatalyst TiO2 / PS / Fe3O4, which specifically comprises the following steps of: mixing absolute ethyl alcohol with tetra-n-butyl titanate, and performing magnetic stirring to form a solution A; adding the magnetic polystyrene beads PS / Fe3O to de-ionized water and performing ultrasonic treatment to form a solution B; under magnetic stirring, adding the solution A to the solution B, thereby obtaining sol after 30-40 min, wherein TiO2 covers the PS / Fe3O at the moment; after condensing and refluxing the sol in a water bath, filtering the sol to obtain the TiO2 / PS / Fe3O4, washing the TiO2 / PS / Fe3O4 by using ethanol, filtering, washing by using distilled water and filtering, thus obtaining a solid; and drying the solid until the weight thereof is constant, thereby obtaining the magnetic photocatalyst TiO2 / PS / Fe3O4 with the polystyrene PS as an isolating layer, the Fe3O4 as a magnetic core and the TiO2 as a shell. The product obtained by using the method is low in energy consumption, high in catalytic activity and recyclable.
Owner:LANZHOU JIAOTONG UNIV

Method for synthesizing monoclinic phase and tetragonal phase mixed high-catalytic-activity bismuth vanadate powder by microwave hydrothermal process

The invention discloses a method for synthesizing monoclinic phase and tetragonal phase blended high-catalytic-activity bismuth vanadate powder by a microwave hydrothermal process, and the method comprises: separately dissolving bismuth nitrate pentahydrate used as a bismuth source and ammonium metavanadate used as a vanadium source in a HNO3 solution and a NaOH solution with a molar ratio of Bi to V being 1:1, adding an appropriate amount of sodium dodecyl benzene sulfonate used as a template agent and NaOH used as a mineralizing agent, and controlling the pH value at 4.6-8.0, microwave hydrothermal reaction temperature at 160-220 DEG C and heat-insulation time at 60-120 minutes to synthesize the monoclinic phase and tetragonal phase blended BiVO4 powder. By adopting the microwave hydrothermal synthesis technique in the invention, high-photocatalytic-activity BiVO4 powder is quickly synthesized. The method as a novel environmentally-friendly rapid synthesis process combines the unique heating characteristics of microwave and the advantages of a hydrothermal method, the process is simple and easy to control, the preparation period is short, the energy is saved, and the resulting powder has uniform particle size distribution and very wide application prospects.
Owner:SHAANXI UNIV OF SCI & TECH

Preparation method and application of ZnO-doped TiO2 composite hollow sphere

The invention discloses a preparation method of a ZnO-doped TiO2 hollow sphere composite photocatalyst, comprising the following steps of: preparing Zn<2+> doped carbon/titanium dioxide nuclear-shell particles by adopting a template method and a hydrolytic cladding method, and then calcinating the nuclear-shell particles to obtain the ZnO-doped TiO2 nano hollow sphere composite photocatalyst. The photocatalyst can be used for catalyzing and degrading cationic dyes under ultraviolet or solar visible light. By utilizing low-cost titanium sources, zinc sources and carbon spheres for preparing the ZnO-doped TiO2 nano hollow sphere composite photocatalyst, the preparation method has the advantages of low cost of raw materials, simple process, short preparation period, less energy consumption and belongs to green synthetic technologies. After TiO2 hollow spheres are doped and compounded by utilizing ZnO, absorption spectrums generate red shift by utilizing the interface coupling effect of the TiO2 hollow spheres and the ZnO so that the spectral response range of the photocatalyst is broadened, and the utilization rate of solar energy is improved; and meanwhile, the method can also inhibit the compounding of photon-generated carriers and improve the activity of the photocatalyst by utilizing the high conductivity of ZnO particles.
Owner:JIANGSU UNIV

Platinum supported nitrogen-doped molybdenum disulfide photocatalyst and preparation method thereof

ActiveCN105618098AGood hydrogen production capacityAnd stable hydrogen production capacityHydrogen productionHydrogen/synthetic gas productionElectrochemistryHydrogen production
The invention provides a platinum supported nitrogen-doped molybdenum disulfide photocatalyst and a preparation method thereof. The method comprises the following steps: with sodium molybdate and thioacetamide as raw materials, preparing molybdenum disulfide nanoplates via a hydrothermal method; performing thermal treatment on the molybdenum disulfide nanoplates in an ammonia atmosphere to obtain nitrogen-doped molybdenum disulfide nanoplates; and finally, loading precious metal platinum on the nitrogen-doped molybdenum disulfide nanoplates via a photo reduction method to obtain the platinum supported nitrogen-doped molybdenum disulfide photocatalyst. With the platinum supported nitrogen-doped molybdenum disulfide photocatalyst, molybdenum disulfide is taken as a photocatalyst to produce hydrogen from water by visible light catalytic decomposition for the first time. The platinum supported nitrogen-doped molybdenum disulfide photocatalyst has excellent visible light catalytic hydrogen production capability and excellent stability. The preparation method is simple to operate, the photocatalyst is good in repeatability, and the application of molybdenum disulfide in the aspects of photocatalysis and electrochemistry is expanded.
Owner:XI AN JIAOTONG UNIV

Sandwiched Zr-MOFs (Metal-organic Frameworks)/graphene composite photocatalyst as well as preparation method and application thereof

The invention provides a sandwiched Zr-MOFs (Metal-organic Frameworks) / graphene composite photocatalyst as well as a preparation method and an application of the photocatalyst. The composite photocatalyst is a material with a sandwich-like structure, formed by a zirconium-containing metal-organic framework compound Zr-BDC-NH2 and graphene through compounding, wherein the graphene is 0.5-5.0% in mass fraction, the modified oxidized graphene is used as a graphene precursor, and a non-covalent self-assembly in-situ solvent thermal method is adopted for preparation; compared with the Zr-MOFs which is not loaded with graphene, the sandwiched Zr-MOFs / graphene composite photocatalyst has the photocatalytic performance improved remarkably, and can transform aromatic alcohol organic matters into the corresponding aromatic aldehyde substances in a high-selectivity manner under the excitation of visible light with 420-800 nanometers, the selectivity is 100% and the primary conversion rate can reach 70%. The non-covalent self-assembly in-situ solvent thermal method is simple and is easy to operate, and the prepared sandwiched Zr-MOFs / graphene composite photocatalyst has excellent capability of selectively oxidizing aromatic alcohol substances under a photocatalytic condition, and has important promotion significance on clean and high-efficiency industrial production of fine chemicals.
Owner:FUZHOU UNIV

Low-concentration copper-doped titanium dioxide nanotube photocatalyst and preparation method thereof

The invention relates to the field of titanium dioxide photocatalysis, in particular to researches in application of a titanium dioxide nanotube modified through metal doping to the field of photocatalysis. The invention provides a simple and feasible preparation method of a copper-doped TiO2 nanotube catalyst. According to the preparation method provided by the invention, low-concentration copper is effectively doped into a titanium dioxide nanotube array through adoption of a constant-voltage electrodeposition method; and the copper inside the titanium dioxide nanotube exists in the form of copper oxide; the copper-doped TiO2 nanotube catalyst has a good photocatalytic activity under ultraviolet light and sunlight; and the composition of electron hole pairs contained in titanium dioxide is effectively inhibited through copper doping, and therefore the photocatalytic property of the titanium dioxide nanotube is enhanced. The preparation method of the photocatalyst is a constant-voltage electrochemical deposition method, in which copper sulfate is taken as electrolyte, and a preparation process is simple; and in addition, the prepared copperdoped TiO2 nanotube catalyst has a stable property and can be used repeatedly.
Owner:NANKAI UNIV

Flower-shaped mesoporous titanium dioxide material and preparation method and application thereof

The invention discloses a flower-shaped mesoporous titanium dioxide material and a preparation method and application thereof. The material is prepared by the following method: 1) adding a template agent into a diluent, adding concentrated hydrochloric acid, and stirring evenly; 2) adding a titanium source into the solution, and stirring; 3) placing the solution in the conditions of the relative humidity above 60% at the temperature of 40-80 DEG C for 12h-24h, crystallizing at 80-90 DEG C for 6-12h; and 4) refluxing a sample to remove a surface active agent, and drying to obtain the flower-shaped mesoporous titanium dioxide. According to the method, high-temperature calcinations is not needed, the reaction synthesis temperature is lower than 100 DEG C, and the obtained flower-shaped mesoporous titanium dioxide material has the advantages of good monodispersity, high specific surface area and controllable crystalline phase and the like. The flower-shaped mesoporous titanium dioxide material can be used for negative electrode materials of a lithium ion battery, has high charge and discharge specific capacity, stable cycle performance, excellent high rate performance and very good photocatalytic activity, and can be used in the fields of degradation of organic pollutants, photocatalytic water splitting for hydrogen production, dye-sensitized solar cells and the like.
Owner:WUHAN UNIV OF TECH

Perovskite solar cell with high fill factor and method for preparing perovskite solar cell

The invention discloses a perovskite solar cell with a high fill factor and a method for preparing the perovskite solar cell. The perovskite solar cell is sequentially provided with a transparent conductive substrate, a hole transport layer, a perovskite thin film, an interface passivation layer, an electron transport layer and a cathode from bottom to top. The interface passivation layer is madefrom alkali metal halide or alkaline earth metal halide on the perovskite thin film by means of evaporation, and the thickness of the interface passivation layer ranges from 1 nm to 5 nm; the electrontransport layer is a C<60> thin film formed on the interface passivation layer by means of evaporation, and the thickness of the C<60> thin film ranges from 10 nm to 20 nm; the cathode is a metal thin film formed on the electron transport layer by means of evaporation, and the thickness of the metal thin film ranges from 50 nm to 120 nm; the perovskite thin film is made from methylamine lead halide or formamidine lead halide; conductive thin films are arranged on the transparent conductive substrate. The perovskite solar cell and the method have the advantages that the shortcoming of incapability of preparing large-area solar cell devices by the aid of existing spin-coating technologies can be overcome by the aid of the perovskite solar cell and the method; the interface passivation layeris prepared by the aid of processes for carrying out evaporation on the alkali metal halide or the alkaline earth halide, accordingly, current carrier recombination at interfaces of perovskite lightabsorption layers and the electron transport layer can be reduced, the efficiency of the perovskite solar cell can be improved, and mass production of large-area cells further can be implemented.
Owner:XI AN JIAOTONG UNIV

Method for preparing visible light photocatalyst Bi2O3/TiO

The invention relates to a method for preparing visible light photocatalyst Bi2O3/TiO2, comprising the following steps: (1) adding cetyl trimethyl ammonium bromide to anhydrous ethanol, and ultrasonically dissolving the cetyl trimethyl ammonium bromide to the anhydrous ethanol to form transparent solution A; (2) adding tetrabutyl titanate to the solution A, and ultrasonically dissolving the tetrabutyl titanate to the solution A to form light yellow transparent solution B; (3) heating the solution B to 75-85 DEG C, adding bismuth nitrate pentahydrate to the solution B, and ultrasonically dispersing the bismuth nitrate pentahydrate to the solution B to form light yellow sol; (4) standing the light yellow sol at 25-45 DEG C to form light yellow gel; (5) aging the light yellow gel at 80-100 DEG C to form light yellow particles; and (6) heating light yellow particles from the room temperature to 450-550 DEG C, calcining the light yellow particles for 5-8h, and cooling the calcined light yellow particles to room temperature naturally to obtain compound semiconductor with visible light catalytic activity. The method for preparing the visible light photocatalyst of Bi2O3/TiO inhibits the combination of the light induced electrons and the hole, improves the quantum efficiency of the photocatalytic reaction and the utilization of solar energy, is easy to operate, has low cost and lays a foundation for the light catalytic technology to be practical. The photocatalyst Bi2O3/TiO2 has high visible light catalytic performance.
Owner:TIANJIN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products