Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1662results about "Launching/towing gear" patented technology

Autonomous Environmental Control System and Method For Post-Capture and Pre-Launch Management of an Unmanned Air Vehicle

An embodiment of the invention is directed to a system for controlling and managing a small unmanned air vehicle (UAV) between capture and launch of the UAV. The system includes an enclosure that provides environmental protection and isolation for multiple small UAVs in assembled and / or partially disassembled states. Control and management of the UAVs includes reorientation of a captured UAV from a landing platform and secure hand-off to the enclosure, decontamination, de-fueling, ingress to the enclosure, downloading of mission payload, UAV disassembly, stowage, retrieval and reassembly of the UAV, mission uploading, egress of the UAV from the enclosure, fueling, engine testing and launch readiness. An exemplary system includes two or more robots controlled by a multiple robot controller for autonomously carrying out the functions described above. A modular, compact, portable and autonomous system of UAV control and management is described.
Owner:LOCKHEED MARTIN CORP

Landing Pad For Unmanned Aerial Vehicle Delivery

A landing pad receives and stores packages delivered from an aerial vehicle are awaiting pickup from an aerial vehicle. The landing pad can be placed outside of a window and can contain a transmitter for sending out an identification signal via radio frequency to aid aerial vehicles in finding the landing pad. The landing pad contains a landing platform with a trapdoor that leads to a storage compartment. The trapdoor can be configured to only open when it receives a signal from an authorized aerial vehicle. The storage compartment can be accessed via a storage compartment door which can contain a locking mechanism. The storage compartment can be climate controlled. The landing pad can also have a transmitter that emits sounds to discourage animals from nesting on or near the landing pad. The landing pad can also include a solar power generator as a source of electrical energy.
Owner:BLACKNIGHT HLDG

Unmanned aerial vehicle including a removable parcel carrier

Systems and methods include UAVs that serve to assist carrier personnel by reducing the physical demands of the transportation and delivery process. A UAV generally includes a UAV chassis including an upper portion, a plurality of propulsion members configured to provide lift to the UAV chassis, and a parcel carrier configured for being selectively coupled to and removed from the UAV chassis. UAV support mechanisms are utilized to load and unload parcel carriers to the UAV chassis, and the UAV lands on and takes off from the UAV support mechanism to deliver parcels to a serviceable point. The UAV includes computing entities that interface with different systems and computing entities to send and receive various types of information.
Owner:UNITED PARCEL SERVICE OF AMERICAN INC

Launch and recovery system for unmanned aerial vehicles

A method of launching and retrieving a UAV (Unmanned Aerial Vehicle) (10). The preferred method of launch involves carrying the UAV (10) up to altitude using a parasail (8) similar to that used to carry tourists aloft. The UAV is dropped and picks up enough airspeed in the dive to perform a pull-up into level controlled flight. The preferred method of recovery is for the UAV to fly into and latch onto the parasail tow line (4) or cables hanging off the tow line and then be winched back down to the boat (2).
Owner:ADVANCED AEROSPACE TECH

Robotically Assisted Launch/Capture Platform For An Unmanned Air Vehicle

An embodiment of the invention is directed to a platform for launching and / or capturing an unmanned air vehicle (UAV), particularly a small UAV. The launch / capture platform includes a frame, a floor attached to the frame that is capable of supporting the UAV, means for acquiring and tracking the UAV in flight, a connector and a connector controller, connecting the platform to an external support structure, providing a controllable, adaptive motion of the platform in response to approaching UAV position and attitude, means for launching the UAV from the platform and for capturing an in-flight UAV to the platform, and means for locking down the UAV between the capture and launch of the UAV. Another embodiment of the invention directed to a method for capturing a small, in-flight UAV involves providing a UAV capture platform, providing a UAV capturing means as an integrated component of the platform, providing means for determining in real-time the relative location of an engaging portion of the capturing means with respect to an approaching in-flight UAV, providing means for automatically maneuvering the engaging portion of the capturing means with respect to at least one of a position and an attitude of the approaching in-flight UAV, capturing the UAV, and securing the captured UAV to the capture platform.
Owner:LOCKHEED MARTIN CORP

Apparatus and methods for variable sweep body conformal wing with application to projectiles, missiles, and unmanned air vehicles

An unmanned air vehicle (“UAV”) apparatus is configured to have a body and a body-conformal wing. The body-conformal wing is configured to variably sweep from a closed position to a fully deployed position. In the closed position, the body-conformal wing span is aligned with the body axis and in the fully deployed position the body-conformal wing span is perpendicular to the axial direction of the body. Delivery of the UAV comprises the steps of: positioning the span of a body conformal wing in alignment with the axis of the body of the UAV; initiating the flight of the UAV; and adjusting the sweep angle of the body-conformal wing as a function of the current speed, altitude, or attack angle of the UAV, with the adjustment starting at a 0 degree position and varying between a closed position and a fully deployed position. The UAV also has a control mechanism configured to variably adjust the sweep of the body-conformal wing to achieve a high lift over drag ratio through out the flight path of the UAV.
Owner:ZONA TECH

Robotically assisted launch/capture platform for an unmanned air vehicle

An embodiment of the invention is directed to a platform for launching and / or capturing an unmanned air vehicle (UAV), particularly a small UAV. The launch / capture platform includes a frame, a floor attached to the frame that is capable of supporting the UAV, means for acquiring and tracking the UAV in flight, a connector and a connector controller, connecting the platform to an external support structure, providing a controllable, adaptive motion of the platform in response to approaching UAV position and attitude, means for launching the UAV from the platform and for capturing an in-flight UAV to the platform, and means for locking down the UAV between the capture and launch of the UAV. Another embodiment of the invention directed to a method for capturing a small, in-flight UAV involves providing a UAV capture platform, providing a UAV capturing means as an integrated component of the platform, providing means for determining in real-time the relative location of an engaging portion of the capturing means with respect to an approaching in-flight UAV, providing means for automatically maneuvering the engaging portion of the capturing means with respect to at least one of a position and an attitude of the approaching in-flight UAV, capturing the UAV, and securing the captured UAV to the capture platform.
Owner:LOCKHEED MARTIN CORP

Systems and methods for deployment and operation of unmanned aerial vehicles

An unmanned aerial vehicle (UAV) system provides for UAV deployment and remote, unattended operation with reduced logistics requirements. The system includes a launcher that can include one or more launch tubes, each launch tube configured to house a UAV in a canister and one or more gas generators operatively connected to each canister and configured to push the UAV out of the launch tube by releasing gas into the canister. A controller for activating the gas generators can sequentially, and with a predetermined time delay, expel the UAV with a desired velocity and acceleration. The system further includes a UAV recovery device, a power supply, a security subsystem, a command and control subsystem and a communications subsystem. Command, control and communications can be provided between a remote station and the UAV.
Owner:SEACORP LLC

Unmanned aerial vehicle launching and landing system

The present invention relates to a system for landing UAV's. The system comprises a slingshot structure that includes arm based structure and an axis means installed along the arm of the structure and wherein it enables the arm to move around it in addition, the system comprises base means connecting the axis means to a platform at which the system is installable. The system also include a controlled pulling and braking means that connects between the arm of the structure and the platform upon which the system is installable and a stretchable elastic means installed in a stretched manner at a gap formed between two arms and set to connect with a landing UAV. At the landing phase, the controlled pulling and braking means of the system, essentially breaks the motion of the arm based structure that is propelled to revolve around the system's axis means, from a time that the UAV forms contact with the elastic means and with it propels the structure to move around the axis means.
Owner:ELBIT SYST LTD

Methods for landing an unmanned aerial vehicle

Systems and methods include UAVs that serve to assist carrier personnel by reducing the physical demands of the transportation and delivery process. A UAV generally includes a UAV chassis including an upper portion, a plurality of propulsion members configured to provide lift to the UAV chassis, and a parcel carrier configured for being selectively coupled to and removed from the UAV chassis. UAV support mechanisms are utilized to load and unload parcel carriers to the UAV chassis, and the UAV lands on and takes off from the UAV support mechanism to deliver parcels to a serviceable point. The UAV includes computing entities that interface with different systems and computing entities to send and receive various types of information.
Owner:UNITED PARCEL SERVICE OF AMERICAN INC

Methods and apparatuses for launching airborne devices along flexible elongated members

Methods and apparatuses for cable launching airborne devices (e.g., unmanned aircraft) are disclosed. In one embodiment, an apparatus includes an elongated structure, e.g., a tower, boom or derrick. At least one flexible elongated member (e.g., a cable or rope) can be attached toward one end to the structure and toward another end to the ground or another structure to form an elongated launch path. A cradle, which can carry the airborne device, can also be movably attached to the flexible elongated member and can be accelerated along the launch path. As the cradle decelerates, the aircraft can be released into flight.
Owner:INSITU INC

Portable catapult launcher for small aircraft

An apparatus for launching an aircraft having a multiplicity of interconnected elongated tracks of rigid material forming a track system and wherein each elongated track has a predetermined elongated track cross-sectional design, a winch system connected to the track system wherein the winch system has a variable mechanical advantage, one or more elongated elastic members wherein one end of each of the one or more elongated elastic members is adjustably connected to the track system, and a carrier slidably mounted to the track system wherein the carrier is connected to the winch system and to the other end of each of the one or more elongated elastic members.
Owner:U S GOVERNMENT AS REPRESENTED BY THE ADMINISTATOR OF NAT AERONAUTICS & SPACE ADMINSTRATION

System for automatic takeoff and landing by interception of small uavs

ActiveUS20150266575A1Facilitate automatic capture and launchPrecise positioningArrester hooksArresting gearLifting capacityFlight vehicle
A system for facilitating automated landing and takeoff of an autonomous or pilot controlled hovering air vehicle with a cooperative underbody at a stationary or mobile landing place and an automated storage system used in conjunction with the landing and takeoff mechanism that stores and services a plurality of UAVs is described. The system is primarily characterized in that the landing mechanism is settable with 6 axes in roll, pitch, yaw, and x, y and z and becomes aligned with and intercepts the air vehicle in flight and decelerates the vehicle with respect to vehicle's inertial limits. The air vehicle and capture mechanism are provided with a transmitter and receiver to coordinate vehicle priority and distance and angles between landing mechanism and air vehicle. The landing and takeoff system has means of tracking the position and orientation of the UAV in real time. The landing mechanism will be substantially aligned to the base of the air vehicle. With small UAVs, their lifting capacity is limited. Reducing sensing and computation requirements by having the landing plate perform the precision adjustments for the landing operation allows for increased flight time and / or payload capacity.
Owner:BORKO BRANDON

Launch and recovery system for unmanned aerial vehicles

A method of launching and retrieving a UAV (Unmanned Aerial Vehicle) (10). The preferred method of launch involves carrying the UAV (10) up to altitude using a parasail (8) similar to that used to carry tourists aloft. The UAV is dropped and picks up enough airspeed in the dive to perform a pull-up into level controlled flight. The preferred method of recovery is for the UAV to fly into and latch onto the parasail tow line (4) or cables hanging off the tow line and then be winched back down to the boat (2).
Owner:ADVANCED AEROSPACE TECH

Systems and Methods for Autonomous Operations of Unmanned Aerial Vehicles

Systems and methods are disclosed for autonomous or remote-controlled operation of unmanned aerial vehicles (“UAVs”). An integrated mechanical and electrical system is capable of launching, controlling, snagging, recovering, securing, parking, and servicing UAVs without human intervention at the site of the system. The illustrative embodiment comprises a boom and a container that houses the boom and UAV(s). The boom rotates about its longitudinal axis to operationally orient a plurality of faces thereof. Each face is associated with certain system operations, including but not limited to: launching a UAV, snagging a UAV from the air, and securing a UAV to the boom.
Owner:LOCKHEED MARTIN CORP

Methods of photo matching and photo confirmation for parcel pickup and delivery

Systems and methods include UAVs that serve to assist carrier personnel by reducing the physical demands of the transportation and delivery process. A UAV generally includes a UAV chassis including an upper portion, a plurality of propulsion members configured to provide lift to the UAV chassis, and a parcel carrier configured for being selectively coupled to and removed from the UAV chassis. UAV support mechanisms are utilized to load and unload parcel carriers to the UAV chassis, and the UAV lands on and takes off from the UAV support mechanism to deliver parcels to a serviceable point. The UAV includes computing entities that interface with different systems and computing entities to send and receive various types of information.
Owner:UNITED PARCEL SERVICE OF AMERICAN INC

Method and apparatus for retrieving a hovering aircraft

For retrieval of a hovering aircraft, a cable, bar, or similar fixture is suspended in an approximately horizontal orientation across the retrieval area between two well-separated supports. The aircraft slowly flies into this fixture, which then slides along the aircraft in a direction approximately parallel with the aircraft's thrust line. This leads to the aircraft becoming fastened to the fixture by an interceptor or aircraft capturer which in alternative embodiments are respectively on the aircraft or the fixture or both. Thrust is then reduced, and the aircraft comes to rest hanging from the fixture for subsequent removal. Retrieval is thus accomplished with simple and economical apparatus, light and unobtrusive elements on the aircraft, low risk of damage, and only moderate piloting accuracy.
Owner:AEROVEL CORP

Aerial vehicle launching system and method

An aerial vehicle launching system includes a launch platform and a restraint system coupled to the launch platform. The restraint system has at least one passive restraint suitably adapted to indirectly restrain an aerial vehicle. The restraint system is configured to coordinate the uniform retention and release of the passive restraint in order to launch the aerial vehicle.
Owner:RAYTHEON CO

Unmanned air vehicle

An unmanned air vehicle for military, land security and the like operations includes a fuselage provided with foldable wings having leading edge flaps and trailing edge ailerons which are operable during ascent from launch to control the flight pattern with the wings folded, the wings being deployed into an open unfolded position when appropriate. The vehicle is contained within a pod from which it is launched and a landing deck is provided to decelerate and arrest the vehicle upon its return to land.
Owner:ISMAILOV ANVAR +1

Aircraft

ActiveUS8313057B2Improvement of landing reliability and useful loadLow costArrester hooksArresting gearJet aeroplaneAerodrome
The inventive aircraft with off-aerodrome landing consists of a body (1), a lifting wing (2) and the onboard part of a rope arresting and landing device comprising an arresting hook (5) which is provided with a grip (6). In the preferred embodiment, said aircraft is provided with a propeller (3) arranged in an annular empennage (4). Said arresting hook is arranged in such a way that it is rotatable around the transversal axis (8) of the aircraft situated in a longitudinal spacing of the aerodynamic mean chord of the wing. The aircraft leads for landing with the upwardly deployed arresting hook in such a way that the trajectory (12) of a top pickup point (6) is higher than the trajectory (13) of the highest top point of the aircraft and higher than a cable or rope (14) tensed on a landing area. The trajectory (13′) of the highest point of the aircraft located ahead of the arresting hook passes at a lower level than the cable (14). In said conditions, the grip of the arresting hook holds the cable which has a required effort for drawing it from a stationary arresting device. By overcoming said effort, the aircraft spends a flight kinetic energy and stops being suspended on the cable.
Owner:VASILIEVICH REDNIKOV VALERIY

Lightweight air vehicle and pneumatic launcher

A portable unmanned air vehicle and launcher system is provided that includes a foldable unmanned air vehicle having a pressure tube; a launch gas reservoir for holding launch gas; a launch tube operatively connected to the launch gas reservoir and having a free end that is positioned in the pressure tube of the air vehicle; a free piston positioned within the launch tube; and a free piston stop to prevent the free piston from leaving the launch tube. A first portion of the launch gas in the launch gas reservoir is released into the launch tube and forces the free piston from an initial position to an end position at which the free piston is stopped by the free piston stop.
Owner:AIRPORTS AUTHORITY OF INDIA

Methods for delivering a parcel to a restricted access area

Systems and methods include UAVs that serve to assist carrier personnel by reducing the physical demands of the transportation and delivery process. A UAV generally includes a UAV chassis including an upper portion, a plurality of propulsion members configured to provide lift to the UAV chassis, and a parcel carrier configured for being selectively coupled to and removed from the UAV chassis. UAV support mechanisms are utilized to load and unload parcel carriers to the UAV chassis, and the UAV lands on and takes off from the UAV support mechanism to deliver parcels to a serviceable point. The UAV includes computing entities that interface with different systems and computing entities to send and receive various types of information.
Owner:UNITED PARCEL SERVICE OF AMERICAN INC

Unmanned aircraft system and operation method thereof

An unmanned aircraft system includes a manned aircraft and an unmanned aircraft. The manned aircraft includes a manned aircraft main wing, a manned aircraft fuselage, a manned aircraft landing system, and a manned aircraft joining mechanism provided at a bottom portion of the manned aircraft fuselage. The unmanned aircraft includes an unmanned aircraft main wing, an unmanned aircraft fuselage, an unmanned aircraft landing system, and an unmanned aircraft joining mechanism provided at a roof portion of the unmanned aircraft fuselage. The manned aircraft joining mechanism and the unmanned aircraft joining mechanism are detachably joined. The unmanned aircraft system can take off or land in a state that the unmanned aircraft and the manned aircraft are joined.
Owner:MITSUBISHI HEAVY IND LTD

Take-off and landing system for unmanned ship-borne unmanned aerial vehicle

ActiveCN105059558AStable and reliable takeoff and landingRealize take-off and landing operationsArresting gearLaunching/towing gearRemote controlUncrewed vehicle
The invention provides a take-off and landing system for an unmanned ship-borne unmanned aerial vehicle, which exerts good stability and can effectively solve a problem that the unmanned aerial vehicle cannot safely take off and land on a bumpy unmanned ship. The take-off and landing system for the unmanned ship-borne unmanned aerial vehicle, provided by the invention, comprises a take-off and landing fixing device, a take-off and landing hanging device and a take-off and landing control device, wherein the take-off and landing fixing device is arranged on the unmanned ship; the take-off and landing hanging device is arranged on the unmanned aerial vehicle; the unmanned aerial vehicle takes off from and lands on the unmanned ship through use of the take-off and landing control device to control coordination between the take-off and landing fixing device and the take-off and landing hanging device; and the take-off and landing control device comprises a take-off and landing process monitoring camera, a meteorological monitoring module, a ship body posture monitoring module, a wireless communication module and a remote control terminal. The take-off and landing system for the unmanned ship-borne unmanned aerial vehicle, provided by the invention, can be applied to the technical field of safety of water area operation equipment.
Owner:ZHUHAI YUNZHOU INTELLIGENCE TECH COMPANY

Unmanned aerial vehicle and launch assembly

An unmanned aerial vehicle (UAV) is provided, that is cost effective to use and manufacture and that includes a low count of component parts, allowing mission planners to use the UAVs in a disposable manner. The UAV includes an airframe having a central body and wings extending from the central body, defining an interior cavity. The airframe includes an upper and a lower shell, each configured of a unitary piece of plastic. The upper and lower shells have walls among them that define a fuel tank and a payload bay in a stacked configuration. The airframe can further include a payload cover configured to enclose the payload bay and to contribute to the central body of the airframe. A launch assembly is also provided. In a first configuration, a launch assembly is provided, that includes a container for housing multiple UAVs and a deployment mechanism that initiates rapid ejection of the UAVs from the container. In a second configuration, a launch assembly is provided, that includes an elastic tether connecting a UAV to an accelerated mass for gentle acceleration to flight speed under a stable tow.
Owner:NORTHROP GRUMMAN SYST CORP

Transforming unmanned aerial-to-ground vehicle

A transforming unmanned aerial-to-ground vehicle assembly comprising: an aerodynamic flying assembly comprising an unmanned aerial vehicle integrated with an unmanned ground vehicle, a power unit shared by the unmanned aerial vehicle and the unmanned ground vehicle, vehicle controls shared by the unmanned aerial vehicle and the unmanned ground vehicle, a disengagement mechanism to separate the unmanned ground vehicle from the unmanned aerial vehicle, one or more manipulator arms located on either the unmanned aerial vehicle or the unmanned ground vehicle, and landing gear.
Owner:HONEYWELL INT INC

Method and apparatus for automated launch, retrieval, and servicing of a hovering aircraft

An aircraft capable of thrust-borne flight can be automatically retrieved, serviced, and launched using equipment suitable for use on a small vessel, or at a base with similarly limited space or irregular motion. For retrieval, the aircraft drops a tether, and pulls the tether at low relative speed into contact with a horizontal guide. The tether is pulled across the guide until the guide is captured by a hook or other end effector. The tether length is then adjusted as necessary, and the aircraft swings on the guide to hang in an inverted position. Translation of the tether along the guide then brings the aircraft to a docking carriage, in which the aircraft parks for servicing. For launch the carriage is swung upright, the end effector is released from the guide, and the aircraft thrusts into free flight. A full ground-handling cycle can thus be accomplished automatically with simple and economical apparatus. It can be used with low risk of damage, and requires only moderate accuracy in manual or automatic flight control.
Owner:AEROVEL CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products