Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

558results about "Convertible aircrafts" patented technology

Tethered aerial system for data gathering

InactiveUS20130233964A1Increase horizontal rangeExtending flight spaceTethered aircraftActuated automaticallyLevel flightFlight vehicle
A tethered unmanned aerial vehicle (“UAV”) may be outfitted with a sensor payload for data gathering. The tethered UAV may be tethered to a ground station for constricting the flight space of the UAV while also providing the option for power delivery and / or bidirectional communications. The tethered UAV's flight path may be extended by introducing one or more secondary UAVs that cooperate to extend the horizontal flight path of a primary UAV. The ground station, which may be coupled with the tethered aerial vehicle, may comprise a listening switch configured to determine a condition of the tether such that the supply of power to the tether may be terminated when tether damage or a tether severance is detected.
Owner:AURORA FLIGHT SCI CORP

Package delivery by means of an automated multi-copter uas/uav dispatched from a conventional delivery vehicle

Methods and associated systems for autonomous package delivery utilize a UAS / UAV, an infrared positioning senor, and a docking station integrated with a package delivery vehicle. The UAS / UAV accepts a package for delivery from the docking station on the delivery vehicle and uploads the delivery destination. The UAS / UAV autonomously launches from its docked position on the delivery vehicle. The UAS / UAV autonomously flies to the delivery destination by means of GPS navigation. The UAS / UAV is guided in final delivery by means of a human supervised live video feed from the UAS / UAV. The UAS / UAV is assisted in the descent and delivery of the parcel by precision sensors and if necessary by means of remote human control. The UAS / UAV autonomously returns to the delivery vehicle by means of GPS navigation and precision sensors. The UAS / UAV autonomously docks with the delivery vehicle for recharging and preparation for the next delivery sequence.
Owner:WORKHORSE GRP INC

Insect-like micro air vehicle having perching, energy scavenging, crawling, and offensive payload capabilities

ActiveUS8167234B1Mission capabilityMission durationConvertible aircraftsUnmanned aerial vehiclesMicro air vehicleEnergy storage
A micro air vehicle (MAV) comprises features that emulate insect-like topology and flight, including a dangling three part body (100a, 100b, 100c), wing-like dual side rotors (107, 107a) positioned to either side on rotor arms (103) providing tilt and teeter motions to vector thrust and allow crawling along improved surfaces, and elevators (101) that approximate the center of gravity and center of pressure control employed by insects via the inertial reaction and aerodynamic influence of a repositionable abdomen. Control, sensing, surveillance, and payload elements (114), (401), (402), (403), (404), (405), and (407) enable transmission of surveillance and engagement of an emerging target. Left and right perch hangers and grapples (112, 112a) allow perching on various structures, and energy storage (504) and (505) combined with power line (500) and solar (502) energy scavenging circuitry allow extended loiter and mission duration by replenishing onboard energy supplies.
Owner:MOORE MICHAEL

Combined submersible vessel and unmanned aerial vehicle

A combined submersible vessel and unmanned aerial vehicle preferably includes a body structure, at least one wing structure coupled to the body structure, at least one vertical stabilizer structure coupled to the body structure, and at least one horizontal stabilizer structure coupled to the body structure. A propulsion system is coupled to the body structure and is configured to propel the flying submarine in both airborne flight and underwater operation. Preferably, the propulsion system includes a motor, a gearbox coupled to the motor and configured to receive power generated by the motor and provide variable output power, a drive shaft coupled to the gearbox and configured to transfer the variable output power provided by the gearbox, and a propeller coupled to the drive shaft and configured to accept power transferred to it from the drive shaft. The propeller is further configured to rotate and propel the flying submarine in both an airborne environment and in an underwater environment.
Owner:AURORA FLIGHT SCI CORP

Vertical take-off and landing vehicles

A VTOL vehicle including a fuselage with two foldable wings, two tiltable nacelles attached to the wings, a vertical stabilizer, a horizontal stabilizer, and two auxiliary thrusters. Each nacelle contains a system of vanes located at the rear opening thereof, and actuators are provided for extending and retracting the vanes in conjunction with nacelle tilting mechanisms to deflect the airflow over a predetermined range of angles from the horizontal. Each nacelle also contains two rotary engines, each of which directly drives a fan. The fans face each other and operate in counter-rotating directions at the same rotational speed. An alternative embodiment includes two additional nacelles attached to the fuselage instead of having the auxiliary thrusters. A redundant computerized flight control system maintains stability of the vehicle as it transitions from one flight mode to another.
Owner:MOLLER INT

Airborne drone delivery network and method of operating same

An airborne drone delivery network and method of operating same that provides an effective system to deliver items to a set number of delivery locations using drones in which the drone flight path is minimized and wherein the drones may be easily retrieved and reused for delivery of additional items.
Owner:W MORRISON CONSULTING GRP

Air-to-Surface Surveillance and/or Weapons System and Method for Air-Based Inspection and/or Engagement of Objects on Land or Sea

An air-to-surface surveillance and / or weapons system includes a base aircraft and an unmanned slave aircraft that can be uncoupled from a base aircraft and coupled back to it again. The base aircraft and slave aircraft are equipped with coupling equipment designed to work together. The base aircraft is equipped with surveillance and monitoring equipment. The slave aircraft is equipped with monitoring equipment and / or weapons. The slave aircraft can be connected to a control station via a data link for data exchange and can be controlled from this control station.
Owner:EADS DEUT GMBH

Systems and Methods for Long Endurance Airship Operations

ActiveUS20130037650A1Improve stationkeeping performanceAltering aerodynamic characteristicsAircraft componentsConvertible aircraftsLighter than airPayload
In one example, a long endurance airship system includes a payload airship and a first logistics airship mechanically joined to the payload airship to form a first combined airship, the payload airship and the logistics airship having design capabilities differing by at least a factor of two with regard to at least one of: power generation capability, propulsion capability, endurance capability, and lift capability, in which the first combined airship is free flying, lighter-than-air, and configured to maintain aloft for greater than 30 days without physical connection to the ground. Illustrative methods for long endurance airship operations are also provided.
Owner:STRATOSPHERIC AIRSHIPS

Vehicle with aerial and ground mobility

A combination rotor and wheel assembly for an unmanned vehicle with ground and aerial mobility has a rotor arm adapted to be attached at an inner end thereof to a vehicle body. A rotor is rotatably connected to an outer end of the rotor arm about a rotor axis, and a rotor drive mounted on the rotor arm rotates the rotor such that the rotor exerts an upward lift force on the rotor arm. An open spoked wheel is rotatably connected about the rotor axis independent of the rotor The diameter of the wheel is greater than that of the rotor, and a bottom edge of the wheel is below the rotor. A wheel drive rotates the wheel. Vehicles can have various numbers and orientations of the rotor and wheel assembly to provide aerial and ground mobility.
Owner:ZENON DRAGAN

Aircraft using turbo-electric hybrid propulsion system for multi-mode operation

A vehicle incorporating a hybrid propulsion system. In one form, the vehicle may be an aircraft such that the system includes gas turbine engines as a first motive power source, and one or more battery packs as a second motive power source. Through selective coupling to an electric motor that can in turn be connected to a bladed rotor or other lift-producing device, the motive sources provide differing ways in which an aircraft can operate. In one example, the gas turbine engines can provide operation for a majority of the flight envelope of the aircraft, while the battery packs can provide operation during such times when gas turbine-based motive power is unavailable or particularly disadvantageous. In another example, both sources of motive power may be decoupled from the bladed rotor such that the vehicle can operate as an autogyro. In another mode of operation, the movement of a bladed rotor can be both decoupled from the sources of propulsion as well as fixed relative to the aircraft such that the aerodynamic surfaces formed on the bladed rotors can act as a fixed wing. In another particular form, the vehicle may be ground-based or water-based.
Owner:SALYER IVAL O

Modular adaptive configured helicopter

InactiveUS7946530B1Requirement is not sufficientMinimum dragAircraft ejection meansConvertible aircraftsModularitySelf adaptive
A method and apparatus for a composite helicopter comprising a rotary wing parent vehicle with various modular cabins detachable therefrom to facilitate various configuration aircraft platforms, dual operation and modular economy.
Owner:TALMAGE JR ROBERT N

Hybrid Propulsion Vertical Take-Off and Landing Aircraft

ActiveUS20170203839A1Out of synchronizationAircraft power plant componentsWingsRotary wingFuselage
A hybrid propulsion aircraft is described having a distributed electric propulsion system. The distributed electric propulsion system includes a turbo shaft engine that drives one or more generators through a gearbox. The generator provides AC power to a plurality of ducted fans (each being driven by an electric motor). The ducted fans may be integrated with the hybrid propulsion aircraft's wings. The wings can be pivotally attached to the fuselage, thereby allowing for vertical take-off and landing. The design of the hybrid propulsion aircraft mitigates undesirable transient behavior traditionally encountered during a transition from vertical flight to horizontal flight. Moreover, the hybrid propulsion aircraft offers a fast, constant-altitude transition, without requiring a climb or dive to transition. It also offers increased efficiency in both hover and forward flight versus other VTOL aircraft and a higher forward max speed than traditional rotorcraft.
Owner:AURORA FLIGHT SCI CORP

Rapidly convertible hybrid aircraft and manufacturing method

A hybrid fixed wing aircraft converts into a roadworthy vehicle in a matter of seconds therefore operating efficiently in both air and ground transportation systems. The single piece wing is mounted on a skewed pivot that is on the lower portion of the fuselage and is operated by a pushbutton operating system. The aircraft includes telescopic twin boom tail design that when extended allows good pitch stability and damping. The aircraft's wing area may be increased with additional telescopic wing tip segments. This allows an increase in aspect ratio, hence improving efficiency at high loads. This feature will also creates a reduction in induced drag at cruise speed by simply retracting the tips in flight. The vehicle has a unique synchronized control system that switches from flight to ground mode without input from the operator, thereby providing a natural interface for the operator.
Owner:EASTER WILLIAM CRAIG

Enclosed drone apparatus and method for use thereof

An unmanned aerial vehicle apparatus (100) that includes an air vehicle assembly (150) that is at least partially enclosed within a protective enclosure assembly (120) The protective enclosure assembly (120) is typically at least partially elastic, to protect the air vehicle assembly (150) from bumps, collisions, and other similar occurrences. The enclosure assembly (120) can also facilitate the ability of the apparatus (100) to operate in a ground movement mode (114), such as a rolling mode (116), in addition to a flying mode (112).
Owner:UAVPATENT CORP

System and method for multiple aircraft lifting a common payload

A system and method are provided for controlling a plurality of aircraft to lift a common payload. The system comprises of multiple aircraft tethered to a common payload, where the group of said aircraft form a swarm that is controlled by a pilot station. Each said aircraft is autonomously stabilized and guided through a swarm avionics unit, which further comprises of sensor, communication, and processing hardware. At the said pilot station, a pilot remotely enters payload destinations, which is processed and communicated to each said aircraft. The method for controlling a multi-aircraft lifting system comprises of first inputting the desired location of the payload, and then determining a series of intermediary payload waypoints. Next, these payload waypoints are used by the swarm waypoint controller to generate individual waypoints for each aircraft; a flight controller for each aircraft moves the aircraft to these individual waypoints.
Owner:SO WILFRED +3

Vehicle with aerial and ground mobility

A combination rotor and wheel assembly for an unmanned vehicle with ground and aerial mobility has a rotor arm adapted to be attached at an inner end thereof to a vehicle body. A rotor is rotatably connected to an outer end of the rotor arm about a rotor axis, and a rotor drive mounted on the rotor arm rotates the rotor such that the rotor exerts an upward lift force on the rotor arm. An open spoked wheel is rotatably connected about the rotor axis independent of the rotor The diameter of the wheel is greater than that of the rotor, and a bottom edge of the wheel is below the rotor. A wheel drive rotates the wheel. Vehicles can have various numbers and orientations of the rotor and wheel assembly to provide aerial and ground mobility.
Owner:ZENON DRAGAN

Multi-Modal Vehicle

A multi-modal vehicle (“MMV”) 20a-20d. The MMV 20a-20d includes a fuselage 22 and a chassis 26 supporting at least three wheels 44 having deployed and stowed states. Extending away from the fuselage 22 is a canard wing system 28 and a main wing system 30. The main wing system 30 includes an inboard portion 134 and an outboard portion 132. The inboard portion 134 is pivotally connected to the fuselage 22; the outboard portion 132 is pivotally connected to the inboard portion 134. The MMV 20a-20d further includes a vertical thrust system 32 comprising a pair of ducted fans 100 that are incorporated into the fuselage 22, and a dual-use thrust system 34 that is configured to transition between a first position for supplying vertical thrust and a second position for supplying a horizontal thrust. A controller 42 is configured to control the MMV operations, reconfigurations, or transitions.
Owner:OHIO UNIV

Combined air, water and road vehicle

Flying Car, readable aircraft, amphibian, multimode, multifunctional, composite versatile personal transport vehicle with twin, parallel fuselages, hulls, each with inflatable pontoons and / or wheels below and a cabin. Combined, aircraft, airplane, aeroplane, flying, air, aerial, airborne vehicle with variable, folding wings which is convertible via automatic transformation to a land vehicle and to a sea vessel. Two wings are stored between the fuselages. They extend on a system of rails, pivots and counter-rotating, fuselage-mounted arms which then sink flush into the wings' undersides and lock for flight. Upon wing extension and retraction, controls for road transport and flight controls alternately emerge or are stowed inoperably, as needed. Engine power alternately drives a propeller for flight, wheels for road travel and a separate, submersible, marine propeller for water transport.
Owner:FLECK FITNESS CONCEPTS

Solar flying automobile with folding wings

The invention discloses a flying automobile with front folding wings and rear folding wings are arranged in series. The front wings are arranged on two sides of the front part of an automobile body; the rear wings are arranged on two sides of the rear part of the automobile body; after being turned and folded, the front wings can be collected on two sides of the automobile body in parallel or collected in a front carriage in a vertical stacking manner; after being turned and folded, the rear wings can be collected on the rear upper side on the top of the automobile body; large-area solar battery panels are arranged on the surfaces of respective parts of the wings and the automobile body; when the wings are unfolded completely, the flying automobile is turned into a serially-arranged fixed wing airplane and becomes a giant solar charger, and the solar battery panels and batteries supply power; when the wings are folded, the appearance and the size of the flying automobile are the same as those of a common sedan; and an underwater propeller is arranged at the bottom of the automobile, so that the flying automobile can be landed on water and sails in the water. The flying automobile is well combined with functions of an airplane, an automobile and a ship and is environment-friendly and high in continuous voyage capacity and suitable for families.
Owner:赵辉 +1

Road/air vehicle

A road / air vehicle is able to quickly and easily convert between two configurations, air configuration and road configuration, to facilitate practical operation as both an aircraft and as an automobile. In air configuration the craft includes two laterally symmetrically flight surfaces; a smaller forward canard wing, generally horizontally disposed and a larger rearward main wing generally horizontally disposed with fin surfaces, generally vertically disposed, at each tip. Control surfaces on the main wing, the canard wing and the tip fins severally provide roll control, pitch control and yaw control in flight. The wheels / undercarriage are of a laterally symmetrical rectangular pattern, with the lateral distance between the two forward wheels and the two rearward wheels being similar. The forward wheels are steerable for ground operations. A suitable powerplant drives the rear wheels for ground operations. A second suitable powerplant provides direct atmospheric thrust for flight operations. In road configuration all flight surfaces and avionics sensors are folded and stored inside compartments within the body of the craft. Controls to facilitate both ground and flight operations are available for a single operator to perform the functions of both driver in road configuration and pilot in air configuration.
Owner:HAYNES ROBIN

Unmanned aircraft system and operation method thereof

An unmanned aircraft system includes a manned aircraft and an unmanned aircraft. The manned aircraft includes a manned aircraft main wing, a manned aircraft fuselage, a manned aircraft landing system, and a manned aircraft joining mechanism provided at a bottom portion of the manned aircraft fuselage. The unmanned aircraft includes an unmanned aircraft main wing, an unmanned aircraft fuselage, an unmanned aircraft landing system, and an unmanned aircraft joining mechanism provided at a roof portion of the unmanned aircraft fuselage. The manned aircraft joining mechanism and the unmanned aircraft joining mechanism are detachably joined. The unmanned aircraft system can take off or land in a state that the unmanned aircraft and the manned aircraft are joined.
Owner:MITSUBISHI HEAVY IND LTD

Telescopic wing with articulated structural spar

A telescopic aircraft wing having an articulated structural spar. The telescopic wing includes a root portion and a tip portion that is telescopically related to the root portion. A spar assembly connects the root portion to the tip portion for providing structural support to the tip portion, and the spar assembly has a plurality of links that are pivotally connected to one another. The spar assembly moves the tip portion with respect to the root portion between an extended position and a retracted position.
Owner:DHALL SANJAY

Transforming unmanned aerial-to-ground vehicle

A transforming unmanned aerial-to-ground vehicle assembly comprising: an aerodynamic flying assembly comprising an unmanned aerial vehicle integrated with an unmanned ground vehicle, a power unit shared by the unmanned aerial vehicle and the unmanned ground vehicle, vehicle controls shared by the unmanned aerial vehicle and the unmanned ground vehicle, a disengagement mechanism to separate the unmanned ground vehicle from the unmanned aerial vehicle, one or more manipulator arms located on either the unmanned aerial vehicle or the unmanned ground vehicle, and landing gear.
Owner:HONEYWELL INT INC

Deformation structure of air vehicle and micro air vehicle

A deformation structure of an air vehicle. The deformation structure includes: a driving part, a transmission part which is fixedly connected to the driving part, is driven by the driving part, and linearly moves back and forth relative to the driving part, a fixing part which sleeves the transmission part, at least two main rods which are respectively disposed on the two sides of the transmission part, wherein each main rod includes a first bottom part and an opposite first tail part, and the first bottom parts of the at least two main rods are hinged to each other and are limited to one end of the fixing part, wherein the end of the fixing part is in proximity to the driving part, at least two auxiliary rods, wherein each auxiliary rod includes a second bottom part and an opposite second tail part, and the two second bottom parts of the at least two auxiliary rods are hinged to each other and are limited to one end of the fixing part, wherein the end of the fixing part is far away from the driving part, at least two pull rods, wherein one end of each pull rod is connected to the first tail part of one of the main rods and the other end of each pull rod is connected to the second tail part of one of the auxiliary rods, and at least two connecting rods, wherein one end of each connecting rod is hinged to the transmission part and the other end of each connecting rod is hinged to the main rod. The invention also provides a micro air vehicle.
Owner:SZ DJI TECH CO LTD

Flying all-terrain vehicle

A method and apparatus are provided for constructing, operating, and marketing a vehicle that is alternatively adaptable for controlled, powered operation on the ground as an all-terrain vehicle (ATV), or in the air as a powered parachute, or for controlled, powered operation on both the ground and in the air as a flying ATV. On the ground, the vehicle is configured for controlled, powered operation over both smooth and rough terrain, as a true all-terrain vehicle.
Owner:HOWARD KENNETH D
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products