Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1107 results about "Autonomous control" patented technology

The Autonomous Systems and Controls Laboratory (ASCL) facilitates fundamental research in the broad field of autonomous systems. Activities encompass fundamental contributions to control, estimation, decision theory, the design of novel hardware, and the practical art of operating advanced vehicles in the field.

Emergency vehicle traffic signal preemption system

An emergency vehicle traffic light preemption system for preemption of traffic lights at an intersection to allow safe passage of emergency vehicles. The system includes a real-time status monitor of an intersection which is relayed to a control module for transmission to emergency vehicles as well as to a central dispatch office. The system also provides for audio warnings at an intersection to protect pedestrians who may not be in a position to see visual warnings or for various reasons cannot hear the approach of emergency vehicles. A transponder mounted on an emergency vehicle provides autonomous control so the vehicle operator can attend to getting to an emergency and not be concerned with the operation of the system. Activation of a priority-code (i.e. Code-3) situation provides communications with each intersection being approached by an emergency vehicle and indicates whether the intersection is preempted or if there is any conflict with other approaching emergency vehicles. On-board diagnostics handle various information including heading, speed, and acceleration sent to a control module which is transmitted to an intersection and which also simultaneously receives information regarding the status of an intersection. Real-time communications and operations software allow central and remote monitoring, logging, and command of intersections and vehicles.
Owner:CALIFORNIA INST OF TECH

Systems and methods for switching between autonomous and manual operation of a vehicle

Systems and methods for switching between autonomous and manual operation of a vehicle are described. In one embodiment, there is a mechanical control system that receives manual inputs from a mechanical operation member to operate the vehicle in manual mode. There is further an actuator that receives autonomous control signals generated by a controller. When the actuator is engaged, it operates the vehicle in an autonomous mode, and when disengaged, it operates the vehicle in manual mode. In another embodiment, there is an E-Stop system to disengage systems that cause the vehicle to move, such as the engine, while still leaving power in the systems that do not cause the vehicle to move. There is a method for autonomous mode starting of a vehicle, comprising receiving a signal indicating autonomous mode, determining that a parking brake lever is set and the brakes are engaged, disengaging the brakes while maintaining the lever in the set position, and engaging in autonomous mode. There is a safety system with a mechanical bias to suppress moveable systems of the vehicle, comprising a clutch that releases the mechanical bias to permit movement of the moveable system when the clutch is engaged. In another embodiment a system comprises a mechanical linkage with a restoration member that permits control of an operation system of the vehicle by a remote operation member when the restoration member is engaged. There is also an actuator that prohibits control of the operation system by the remote operation member when the actuator is engaged.
Owner:DEERE & CO +1

Emergency vehicle traffic signal preemption system

An emergency vehicle traffic light preemption system for preemption of traffic lights at an intersection to allow safe passage of emergency vehicles. The system includes a real-time status monitor of an intersection which is relayed to a control module for transmission to emergency vehicles as well as to a central dispatch office. The system also provides for audio warnings at an intersection to protect pedestrians who may not be in a position to see visual warnings or for various reasons cannot hear the approach of emergency vehicles. A transponder mounted on an emergency vehicle provides autonomous control so the vehicle operator can attend to getting to an emergency and not be concerned with the operation of the system. Activation of a priority-code (i.e. Code-3) situation provides communications with each intersection being approached by an emergency vehicle and indicates whether the intersection is preempted or if there is any conflict with other approaching emergency vehicles. On-board diagnostics handle various information including heading, speed, and acceleration sent to a control module which is transmitted to an intersection and which also simultaneously receives information regarding the status of an intersection. Real-time communications and operations software allow central and remote monitoring, logging, and command of intersections and vehicles.
Owner:CALIFORNIA INST OF TECH

Transmission power control device and method, mobile station, and communication device in mobile communication system

A transmission power control device is provided that includes: a transmission loss calculator that calculates a transmission loss in the electric wave transmission path between a mobile station and each base station; and a transmission power control information determiner that determines which transmission power control information is to be used in a transmission power control operation at the mobile station, based on transmission power control information transmitted from each base station to the mobile station and the transmission loss in the transmission path between the mobile station and each base station calculated by the transmission loss calculator. This transmission power control device may further include an autonomous controller that increases transmission power from a current value in accordance with predetermined characteristics, regardless of transmission power control information from another communication device, when reception signal quality has become lower than a predetermined quality level. With this structure, after synchronization with a signal from the base station is established at the mobile station, the transmission power is controlled to increase from the initial value in accordance with the predetermined characteristics, regardless of the transmission power control information transmitted from the base station.
Owner:NTT DOCOMO INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products