Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

72 results about "Chiral nematic liquid crystal" patented technology

Laminated retardation optical element, process of producing the same, and liquid crystal display

The present invention provides a laminated retardation optical element that never lowers contrast and thus never degrades display performance even when placed between a liquid crystal cell and a lambda/4 retardation film. In a liquid crystal display 90, a laminated retardation optical element 10 is placed between a polarizer 102A on the incident side and a liquid crystal cell 104, and a lambda/4 retardation film 102C is placed between a polarizer 102B on the emergent side and the liquid crystal cell 104. The laminated retardation optical element 10 comprises: a lambda/4 retardation layer 14 having the function of bringing, to light that passes through this retardation layer, a phase difference corresponding to a quarter of the wavelength of the light; and a C plate-type retardation layer 16 that acts as a negative C plate. The lambda/4 retardation layer 14 and the C plate-type retardation layer 16 are laminated to a transparent substrate 12 in the order mentioned, and are optically bonded to each other. The lambda/4 retardation layer 14 comprises as its main component a horizontally-aligned, cross-linked nematic liquid crystal, while the C plate-type retardation layer 16 comprises as its main component a cross-linked chiral nematic liquid crystal (a cross-linked nematic liquid crystal and a cross-linked chiral agent) or cross-linked discotic liquid crystal.
Owner:DAI NIPPON PRINTING CO LTD

Method for utilizing polymer stable liquid crystal material to prepare light brightness enhancement film

The invention belongs to the field of application of liquid crystal materials and provides a method for utilizing polymer stable liquid crystal material to prepare a light brightness enhancement film. The method comprises the following steps of: mixing nematic liquid crystals, chiral compounds, ultraviolet polymerizable liquid crystal monomers, ultraviolet polymerizable siloxane and photoinitiators uniformly according to a certain mass proportion, injecting the mixture into pretreated film materials combined by PSLC substrate, carrying out diffusion from the high-concentration substrate to the low-concentration substrate by the chiral compounds, generating chiral nematic liquid crystals with continuous and different screw pitches, carrying out ultraviolet radiation on the film material, leading the ultraviolet polymerizable liquid crystal monomer molecules to occur polymerization reaction, forming a high-molecular network, leading the planar texture of the liquid crystal molecules to be stabilized and finally obtaining the PSLC material with wide wave reflection characteristics. The film material can reflect circularly polarized light with the reflection wavelength of 300 to 1500nm and the range of the reflected wave width can be precisely controlled. According to the differences of the reflection wavebands, the film material can be applied to the field of light brightness enhancement films and infrared ultraviolet light screen films of liquid crystal displays and the like.
Owner:UNIV OF SCI & TECH BEIJING

Liquid crystal display and method for producing the same

The invention provides a liquid crystal display having high reliability, which is excellent in terms of optical characteristics, heat resistance, and shock resistance, wherein a liquid crystal display consisting of a cholesteric liquid crystal, a chiral nematic liquid crystal or a liquid crystal 1 layer, being a combination thereof, which is roughly pillar-like and polygonal in section or has a roughly pillar-like form enclosed by a closed curve, and divided by said polymer network into areas whose minimum diameter measured by vernier calipers is 5 mum and whose maximum diameter measured by vernier calipers is 100 mum, is obtained by polymer networks 4 formed by polymerization of monomer, so that sufficient reflection can be obtained from the liquid crystal 1 without being optical scattering. Although the perpendicular array of the helical axes of liquid crystal 1 is slightly disordered by a polymer network 4 with respect to the plane of a pair of ITO 2a, 2b and substrates 3a,3b, wherein since almost all light entering from the substrata 3a side is reflected backwards (substrate 3a side) by Bragg's reflection, it is possible to decrease the visual angle dependency in comparison with a prior art liquid crystal display not containing any polymer constituents, and networks 4 which have been greatly established form intensive pillars (macromolcular resin walls), thereby improving the shock resistance properties.
Owner:NANOX

Liquid crystal display device and its production method

The objective of the present invention is to provide a liquid crystal display device for displaying colors by transmission and reflection modes and a method for producing such devices, whereby the additive color mixing can be used, the structure is simplified, the driving-voltage is lower, the contrast is higher, the response speed is higher, and the screen can be larger. This objective can be achieved by a method including the following steps: mixing 0.001 to 20 wt % of dichromatic melanotic pigment into chiral nematic liquid crystal mixed with chiral dopant; preparing a mixture of the liquid crystal and prepolymer to be polymerized into transparent polymeric solid; inserting the mixture into the space between two conductive substrates, wherein at least one of which is transparent; and irradiating ultra-violet light or neighboring short-wavelength light onto the mixture. This process creates an accumulation of small packets composed of the liquid crystal packed with a thin film of the transparent polymeric solid within a light-controlling layer between the two conductive substrates. When no voltage is applied, the pigment molecules absorb light because they are distributed within the space with their longitudinal axis randomly directed. When a voltage is applied, elongated liquid crystal molecules are oriented perpendicular to the substrates, and the pigment molecules are also oriented in a similar manner. In this state, the black color of the pigment molecules does not appear, so that light is allowed to pass therethrough.
Owner:ASADA TADAHIRO

Laminated retardation optical element, process of producing the same, and liquid crystal display

The present invention provides a laminated retardation optical element that never lowers contrast and thus never degrades display performance even when placed between a liquid crystal cell and a λ / 4 retardation film. In a liquid crystal display 90, a laminated retardation optical element 10 is placed between a polarizer 102A on the incident side and a liquid crystal cell 104, and a λ / 4 retardation film 102C is placed between a polarizer 102B on the emergent side and the liquid crystal cell 104. The laminated retardation optical element 10 comprises: a λ / 4 retardation layer 14 having the function of bringing, to light that passes through this retardation layer, a phase difference corresponding to a quarter of the wavelength of the light; and a C plate-type retardation layer 16 that acts as a negative C plate. The λ / 4 retardation layer 14 and the C plate-type retardation layer 16 are laminated to a transparent substrate 12 in the order mentioned, and are optically bonded to each other. The λ / 4 retardation layer 14 comprises as its main component a horizontally-aligned, cross-linked nematic liquid crystal, while the C plate-type retardation layer 16 comprises as its main component a cross-linked chiral nematic liquid crystal (a cross-linked nematic liquid crystal and a cross-linked chiral agent) or cross-linked discotic liquid crystal.
Owner:DAI NIPPON PRINTING CO LTD

Liquid crystal optical device and process for its production

To provide a liquid crystal optical device showing a low haze value in the transparent state, further an excellent stability in the transparent-scattering characteristics and productivity, and to provide a production process thereof.The liquid crystal optical device in the embodiment 1 of the present invention is a liquid crystal optical device 1 comprising a pair of insulating substrates 11 and 21, of which at least one is transparent, electrodes 12 and 22 formed on respective inner faces of the substrates, and a composite 50 comprising nematic liquid crystal and a cured material, interposed between the inner faces of the substrates. The composite 50 is obtained by curing the following curable compound in the following chiral nematic liquid crystal composition in a state where the liquid crystal composition is interposed between the inner faces of the insulating substrates and the liquid crystal is aligned:chiral nematic liquid crystal composition: a liquid crystal composition showing a chiral nematic phase, comprising nematic liquid crystal and a curable compound, wherein at least a part of the curable compound is an optically active material having an optical rotatory power, and the optically active material having an optical rotatory power consists substantially solely of the curable compound.
Owner:ASAHI GLASS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products