Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

171 results about "Discotic liquid crystal" patented technology

Discotic liquid crystals are mesophases formed from disc-shaped molecules known as "discotic mesogens". These phases are often also referred to as columnar phases. Discotic mesogens are typically composed of an aromatic core surrounded by flexible alkyl chains. The aromatic cores allow charge transfer in the stacking direction through the π conjugate systems. The charge transfer allows the discotic liquid crystals to be electrically semiconductive along the stacking direction. Applications have been focusing on using these systems in photovoltaic devices, organic light emitting diodes (OLED), and molecular wires. Discotics have also been suggested for use in compensation films, for LCD displays.

Electrically switchable polymer-dispersed liquid crystal materials including switchable optical couplers and reconfigurable optical interconnects

A new photopolymerizable material allows single-step, fast recording of volume holograms with properties that can be electrically controlled. Polymer-dispersed liquid crystals (PDLCs) in accordance with the invention preferably comprise a homogeneous mixture of a nematic liquid crystal and a multifunctional pentaacrylate monomer in combination with photoinitiator, coinitiator and cross-linking agent. Optionally, a surfactant such as octancic acid may also be added. The PDLC material is exposed to coherent light to produce an interference pattern inside the material. Photopolymerization of the new PDLC material produces a hologram of clearly separated liquid crystal domains and cured polymer domains. Volume transmission gratings made with the new PDLC material can be electrically switched between nearly 100% diffraction efficiency and nearly 0% diffraction efficiency. By increasing the frequency of the switching voltage, switching voltages in the range of 50 Vrms can be achieved. The optional use of a surfactant allows low switching voltages at lower frequencies than without a surfactant. In an alternative embodiment, a PDLC material in accordance with the invention can be utilized to form reflection gratings, including switchable reflection gratings. In still further embodiments, a PDLC material in accordance with the invention can be used to form switchable subwavelength gratings. By further processing, static transmission, reflection, and subwavelength PDLC materials can be formed. In addition, PDLC materials in accordance with the present invention can be used to form switchable slanted transmission gratings suitable for switchable optical coupling and reconfigurable optical interconnects.
Owner:LEIDOS

Laminated retardation optical element, process of producing the same, and liquid crystal display

The present invention provides a laminated retardation optical element that never lowers contrast and thus never degrades display performance even when placed between a liquid crystal cell and a lambda/4 retardation film. In a liquid crystal display 90, a laminated retardation optical element 10 is placed between a polarizer 102A on the incident side and a liquid crystal cell 104, and a lambda/4 retardation film 102C is placed between a polarizer 102B on the emergent side and the liquid crystal cell 104. The laminated retardation optical element 10 comprises: a lambda/4 retardation layer 14 having the function of bringing, to light that passes through this retardation layer, a phase difference corresponding to a quarter of the wavelength of the light; and a C plate-type retardation layer 16 that acts as a negative C plate. The lambda/4 retardation layer 14 and the C plate-type retardation layer 16 are laminated to a transparent substrate 12 in the order mentioned, and are optically bonded to each other. The lambda/4 retardation layer 14 comprises as its main component a horizontally-aligned, cross-linked nematic liquid crystal, while the C plate-type retardation layer 16 comprises as its main component a cross-linked chiral nematic liquid crystal (a cross-linked nematic liquid crystal and a cross-linked chiral agent) or cross-linked discotic liquid crystal.
Owner:DAI NIPPON PRINTING CO LTD

Liquid crystal display and method for producing the same

The invention provides a liquid crystal display having high reliability, which is excellent in terms of optical characteristics, heat resistance, and shock resistance, wherein a liquid crystal display consisting of a cholesteric liquid crystal, a chiral nematic liquid crystal or a liquid crystal 1 layer, being a combination thereof, which is roughly pillar-like and polygonal in section or has a roughly pillar-like form enclosed by a closed curve, and divided by said polymer network into areas whose minimum diameter measured by vernier calipers is 5 mum and whose maximum diameter measured by vernier calipers is 100 mum, is obtained by polymer networks 4 formed by polymerization of monomer, so that sufficient reflection can be obtained from the liquid crystal 1 without being optical scattering. Although the perpendicular array of the helical axes of liquid crystal 1 is slightly disordered by a polymer network 4 with respect to the plane of a pair of ITO 2a, 2b and substrates 3a,3b, wherein since almost all light entering from the substrata 3a side is reflected backwards (substrate 3a side) by Bragg's reflection, it is possible to decrease the visual angle dependency in comparison with a prior art liquid crystal display not containing any polymer constituents, and networks 4 which have been greatly established form intensive pillars (macromolcular resin walls), thereby improving the shock resistance properties.
Owner:NANOX

Pressure-sensitive adhesive optical film and image display

A pressure-sensitive adhesive optical film of the present invention comprises: an optical film comprising a transparent base film and a discotic liquid crystal layer provided on one side of the transparent base film; an undercoat layer; and a pressure-sensitive adhesive layer provided on the discotic liquid crystal layer with the undercoat layer interposed therebetween, the undercoat layer comprises a polymer and an antioxidant; and the pressure-sensitive adhesive layer comprises a (meth)acrylic polymer (A) comprising 80 to 99.5% by weight of an alkyl (meth)acrylate monomer unit and 0.05 to 3% by weight of a hydroxyl group-containing monomer unit and having a weight average molecular weight of 1,000,000 to 2,500,000; ; a (meth)acrylic oligomer (B) comprising 80 to 99.9% by weight of an alkyl (meth)acrylate monomer unit and 0.1 to 3% by weight of a carboxyl group-containing monomer unit and having a weight average molecular weight of 3,000 to 8,000; a crosslinking agent (C); and a silane coupling agent (D), and the pressure-sensitive adhesive layer comprises 10 to 40 parts by weight of the (meth)acrylic oligomer (B) based on 100 parts by weight of the (meth)acrylic polymer (A). The pressure-sensitive adhesive optical film has durability and can suppress display unevenness in a peripheral portion of a display screen and window frame unevenness in a state that a backlight is on.
Owner:NITTO DENKO CORP

Pressure-sensitive adhesive optical film and image display

A pressure-sensitive adhesive optical film of the present invention comprises: an optical film comprising a transparent base film and a discotic liquid crystal layer provided on one side of the transparent base film; an undercoat layer; and a pressure-sensitive adhesive layer provided on the discotic liquid crystal layer with the undercoat layer interposed therebetween, the undercoat layer comprises a polymer and an antioxidant; and the pressure-sensitive adhesive layer comprises a (meth)acrylic polymer (A) comprising 80 to 99.5% by weight of an alkyl (meth)acrylate monomer unit and 0.05 to 3% by weight of a hydroxyl group-containing monomer unit and having a weight average molecular weight of 1,000,000 to 2,500,000; a (meth)acrylic oligomer (B) comprising 80 to 99.9% by weight of an alkyl (meth)acrylate monomer unit and 0.1 to 3% by weight of a carboxyl group-containing monomer unit and having a weight average molecular weight of 3,000 to 8,000; a crosslinking agent (C); and a silane coupling agent (D), and the pressure-sensitive adhesive layer comprises 10 to 40 parts by weight of the (meth)acrylic oligomer (B) based on 100 parts by weight of the (meth)acrylic polymer (A). The pressure-sensitive adhesive optical film has durability and can suppress display unevenness in a peripheral portion of a display screen and window frame unevenness in a state that a backlight is on.
Owner:NITTO DENKO CORP

Laminated retardation optical element, process of producing the same, and liquid crystal display

The present invention provides a laminated retardation optical element that never lowers contrast and thus never degrades display performance even when placed between a liquid crystal cell and a λ / 4 retardation film. In a liquid crystal display 90, a laminated retardation optical element 10 is placed between a polarizer 102A on the incident side and a liquid crystal cell 104, and a λ / 4 retardation film 102C is placed between a polarizer 102B on the emergent side and the liquid crystal cell 104. The laminated retardation optical element 10 comprises: a λ / 4 retardation layer 14 having the function of bringing, to light that passes through this retardation layer, a phase difference corresponding to a quarter of the wavelength of the light; and a C plate-type retardation layer 16 that acts as a negative C plate. The λ / 4 retardation layer 14 and the C plate-type retardation layer 16 are laminated to a transparent substrate 12 in the order mentioned, and are optically bonded to each other. The λ / 4 retardation layer 14 comprises as its main component a horizontally-aligned, cross-linked nematic liquid crystal, while the C plate-type retardation layer 16 comprises as its main component a cross-linked chiral nematic liquid crystal (a cross-linked nematic liquid crystal and a cross-linked chiral agent) or cross-linked discotic liquid crystal.
Owner:DAI NIPPON PRINTING CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products