Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

401 results about "Usage analysis" patented technology

Method and system for usage analyzer that determines user accessed sources, indexes data subsets, and associated metadata, processing implicit queries based on potential interest to users

The present invention relates to systems and methods providing content-access-based information retrieval. Information items from a plurality of disparate information sources that have been previously accessed or considered are automatically indexed in a data store, whereby a multifaceted user interface is provided to efficiently retrieve the items in a cognitively relevant manner. Various display output arrangements are possible for the retrieved information items including timeline visualizations and multidimensional grid visualizations. Input options include explicit, implicit, and standing queries for retrieving data along with explicit and implicit tagging of items for ease of recall and retrieval. In one aspect, an automated system is provided that facilitates concurrent searching across a plurality of information sources. A usage analyzer determines user accessed items and a content analyzer stores subsets of data corresponding to the items, wherein at least two of the items are associated with disparate information sources, respectively. An automated indexing component indexes the data subsets according to past data access patterns as determined by the usage analyzer. A search component responds to a search query, initiates a search across the indexed data, and outputs links to locations of a subset and/or provides sparse representations of the subset.
Owner:MICROSOFT TECH LICENSING LLC

Analyte Measurement and Management Device and Associated Methods

A method for measuring and managing an analyte (e.g., blood glucose) in a bodily fluid includes storing a therapeutic administration protocol in a memory module of an analyte measurement and management device and measuring the analyte in the bodily fluid sample using an analyte measurement module of the device. The method also includes calculating, with a processor module of the device, a recommended therapeutic agent dosage (for example, an insulin dosage) and a recommended administration time for user-activated delivery of the dosage by employing the therapeutic administration protocol. The method further includes displaying the recommended therapeutic agent dosage and administration time to a user on a visual display of the device, delivering a therapeutic agent dosage to the user via a user-activated therapeutic agent delivery device, and detecting the user-activated administration of the therapeutic agent using a delivery device communication module of the device. In addition, the method includes communicating the aforementioned detection to the processor module and/or memory module using the delivery device communication module. The method employs analyte measurement, memory, processor, and delivery device modules, as well as a visual display, and user interface that are integrated as a single hand-held unit.
Owner:LIFESCAN INC

Functional coverage analysis systems and methods for verification test suites

Coverage metrics are expressed with an intuitive graphical interface based upon data flow. Coverage analysis and presentation objects are integrated to produce coverage results which enable device functionality in a device under test to be modeled as objects, subject to event occurrence. Event objects are introspected at run-time, allowing the user to determine the event object's attributes with specification of coverage metrics subject to a selected combination of the event object's attributes. The event objects are serialized into permanent storage, allowing the user to specify and execute new coverage metrics at any time after simulation. Operations used to describe coverage metrics are modeled as analysis objects. Such analysis objects accept event objects as inputs, using a predetermined, well-defined interface. The combination of event objects and analysis objects allows coverage metrics to be specified in a simple data flow manner. With such a coverage metric, the user attaches or wires (metaphorically) the analysis objects together in a visual builder environment. Using the analysis objects, the user specifies desired coverage metrics, such as coverage of sequences of events and/or coverage of events that occur during the same time window of a simulation. The display functionality of the coverage tool is expandable because the presentation objects use the same event object interface as the analysis operator objects. Coverage metrics are subject to specification either before or after event occurrence. The user specifies coverage metrics using an intuitive graphical interface based upon data flow, without any specific programming language skills being necessary. Functional events in the device under test are treated as event objects. Each event object may be passed to selected analysis tools chosen by the user, such as analyzers, logic gates, and coincidence counters.
Owner:CIRRUS LOGIC INC

System for managing risk

A system for providing an analysis of use in managing risk, the system including: a knowledge base, for maintaining generic risk records each including a plurality of different fields; a data store of profiles, for maintaining profile risk records associated with a particular profile, each profile risk record including the same plurality of fields as a generic risk record; and a risk processor, for updating generic risk records based on profile risk records in the data store of profiles. The knowledge base includes generic risk records with field values that can be refined over time so as to be useful in providing a more accurate risk assessment in any particular profile. Some of the risk record fields are measuring fields input by the user, and some are calculated fields calculated by the system, and the system allows different modes of analysis in which the fields that are the measuring fields differ. Also, in some applications, the system can be used in different modes of use, and only some fields, depending on the mode of use, are required. In some such applications, in one mode of use for example, an inherent risk impact cost is aggregated over an inherent cost of each consequence of the risk. A scripting facility is also sometimes provided for enabling a user to create a script directing how a risk management process is to be performed, the script indicating steps that can be used in performing risk analysis in any profile.
Owner:CORPROFIT SYST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products