Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

514 results about "Electron density" patented technology

In chemistry electron density is the measure of the probability of an electron being present at a specific location. According to quantum mechanics, due to the uncertainty principle on an atomic scale the exact location of an electron cannot be predicted, only the probability of its being at a given position; therefore electrons in atoms and molecules act as if they are "smeared out" in space. For one-electron systems, the electron density at any point is proportional to the square magnitude of the wavefunction.

Electron beam exciter for use in chemical analysis in processing systems

ActiveUS20100032587A1Disparity will become so greatHigh electron energyCathode ray tubes/electron beam tubesRadiation therapyElectron sourceFluorescence
The present invention is directed to a gas line electron beam exciter, gas line electron beam excitation system and method for exciting a gas using an electron beam exciter. The electron beam exciter generally comprises a variable density electron source for generating a cloud of electrons in an electron chamber and a variable energy electron extractor for accelerating electrons from the electron chamber as an electron beam and into an effluent stream for fluorescing species in the effluent. The electron density of the electron beam is variably controlled by adjusting the excitation power applied to the variable density electron source. The electrons in the electron chamber reside at a reference electrical potential of the chamber, typically near ground electrical potential. The electron energy of the electron beam is variably controlled by adjusting an electrical potential across the variable energy electron extractor, which energizes the electrons through an extraction hole of the chamber and toward the extractor. The greater the difference in the electrical potential between the electron extractor and the electron source, the higher the energy imparted to the electrons in the electron beam. The excitation power applied to the electron source can be adjusted independently from the electron energy of the electron beam, thereby altering the electron density of the electron beam without changing the energy level of the electrons of the electron beam.
Owner:VERITY INSTR +1

Method and arrangement for the efficient generation of short-wavelength radiation based on a laser-generated plasma

InactiveUS20060215712A1Losses in the main pulse (e.g., due to transmission) are minimizedLaser using scattering effectsActive medium materialIon densityElectromagnetic radiation
The invention is directed to a method and an arrangement for the efficient generation of intensive short-wavelength radiation based on a plasma. The object of the invention is to find a novel possibility for the generation of intensive short-wavelength electromagnetic radiation, particularly EUV radiation, which permits the excitation of a radiation-emitting plasma with economical gas lasers (preferably CO2 lasers). This object is met, according to the invention, in that a first prepulse for reducing the target density is followed by at least a second prepulse which generates free electrons in the target by multiphoton ionization after a virtually complete recombination of free electrons generated by the first prepulse has taken place due to a long-lasting expansion of the target for reducing the target density, and the main pulse of a gas laser with a low critical electron density typical for its wavelength is directed to the target immediately after the second prepulse when the second prepulse in the expanded target, whose ion density corresponds to the critical electron density of the gas laser, has created enough free electrons so that an efficient avalanche ionization is triggered by the main pulse of the gas laser until reaching the ionization level for the desired radiation emission of the plasma.
Owner:XTREME TECH

Structured targets for x-ray generation

We disclose targets for generating x-rays using electron beams, along with their method of fabrication. The targets comprise a number of microstructures fabricated from an x-ray target material arranged in close thermal contact with a substrate such that the heat is more efficiently drawn out of the x-ray target material. This in turn allows irradiation of the x-ray generating substance with higher electron density or higher energy electrons, which leads to greater x-ray brightness, without inducing damage or melting.The microstructures may comprise conventional x-ray target materials (such as tungsten) that are patterned at micron-scale dimensions on a thermally conducting substrate, such as diamond. The microstructures may have any number of geometric shapes to best generate x-rays of high brightness and efficiently disperse heat.In some embodiments, the target comprising microstructures may be incorporated into a rotating anode geometry, to enhance x-ray generation in such systems.
Owner:SIGRAY INC

Semiconductor device and method for manufacturing the same

A manufacturing method of a semiconductor device of the present invention includes the steps of forming a first insulating film over a substrate, forming a semiconductor film over the first insulating film, oxidizing or nitriding the semiconductor film by conducting a plasma treatment to the semiconductor film under a condition of an electron density of 1×1011 cm−3 or more and 1×1013 cm−3 or less and an electron temperature of 0.5 eV or more and 1.5 eV or less, using a high frequency wave, forming a second insulating film to cover the semiconductor film, forming a gate electrode over the second insulating film, forming a third insulating film to cover the gate electrode, and forming a conductive film over the third insulating film.
Owner:SEMICON ENERGY LAB CO LTD

X-ray surface analysis and measurement apparatus

This disclosure presents systems for total reflection x-ray fluorescence measurements that have x-ray flux and x-ray flux density several orders of magnitude greater than existing x-ray technologies. These may therefore useful for applications such as trace element detection and / or for total-reflection fluorescence analysis. The higher brightness is achieved in part by using designs for x-ray targets that comprise a number of microstructures of one or more selected x-ray generating materials fabricated in close thermal contact with a substrate having high thermal conductivity. This allows for bombardment of the targets with higher electron density or higher energy electrons, which leads to greater x-ray brightness and therefore greater x-ray flux. The high brightness / high flux source may then be coupled to an x-ray reflecting optical system, which can focus the high flux x-rays to a spots that can be as small as one micron, leading to high flux density.
Owner:SIGRAY INC

X-ray surface analysis and measurement apparatus

This disclosure presents systems for total reflection x-ray fluorescence measurements that have x-ray flux and x-ray flux density several orders of magnitude greater than existing x-ray technologies. These may therefore useful for applications such as trace element detection and / or for total-reflection fluorescence analysis.The higher brightness is achieved in part by using designs for x-ray targets that comprise a number of microstructures of one or more selected x-ray generating materials fabricated in close thermal contact with a substrate having high thermal conductivity. This allows for bombardment of the targets with higher electron density or higher energy electrons, which leads to greater x-ray brightness and therefore greater x-ray flux.The high brightness / high flux source may then be coupled to an x-ray reflecting optical system, which can focus the high flux x-rays to a spots that can be as small as one micron, leading to high flux density.
Owner:SIGRAY INC

X-ray surface analysis and measurement apparatus

Systems for x-ray diffraction / scattering measurements having greater x-ray flux and x-ray flux density are disclosed. These are useful for applications such as material structural analysis and crystallography. The higher flux is achieved by using designs for x-ray targets comprising a number of microstructures of one or more selected x-ray generating materials fabricated in close thermal contact with a substrate having high thermal conductivity. This allows for bombardment of the targets with higher electron density or higher energy electrons, which leads to greater x-ray flux. The high brightness / high flux source may then be coupled to an x-ray reflecting optical system, which can focus the high flux x-rays to a spots that can be as small as one micron, leading to high flux density, and used to illuminate materials for the analysis based on their scattering / diffractive effects.
Owner:SIGRAY INC

High brightness X-ray absorption spectroscopy system

This disclosure presents systems for x-ray absorption fine structure (XAFS) measurements that have x-ray flux and flux density several orders of magnitude greater than existing compact systems. These are useful for laboratory or field applications of x-ray absorption near-edge spectroscopy (XANES) or extended x-ray fine absorption structure (EXFAS) spectroscopy. The higher brightness is achieved by using designs for x-ray targets that comprise a number of aligned microstructures of x-ray generating materials fabricated in close thermal contact with a substrate having high thermal conductivity. This allows for bombardment with higher electron density and / or higher energy electrons, leading to greater x-ray brightness and high flux. The high brightness x-ray source is then coupled to an x-ray reflecting optical system to collimate the x-rays, and a monochromator, which selects the exposure energy. Absorption spectra of samples using the high flux monochromatic x-rays can be made using standard detection techniques.
Owner:SIGRAY INC

X-ray sources using linear accumulation

We disclose a compact source for high brightness x-ray generation. The higher brightness is achieved through electron beam bombardment of multiple regions aligned with each other to achieve a linear accumulation of x-rays. This may be achieved by aligning discrete x-ray sources, or through the use of novel x-ray targets that comprise a number of microstructures of x-ray generating materials fabricated in close thermal contact with a substrate with high thermal conductivity. This allows heat to be more efficiently drawn out of the x-ray generating material, and in turn allows bombardment of the x-ray generating material with higher electron density and / or higher energy electrons, leading to greater x-ray brightness.The orientation of the microstructures allows the use of an on-axis collection angle, allowing the accumulation of x-rays from several microstructures to be aligned to appear to have a single origin, also known as “zero-angle” x-ray emission.
Owner:SIGRAY INC

Experimental apparatus for acquiring large-area uniform discharge plasmas

The invention relates to an experimental apparatus for acquiring large-area uniform discharge plasmas, which belongs to the technical field of plasmas. The experimental apparatus comprises a bipolar nanosecond pulse power supply, a reactor, multi-needle-to-plate electrodes, a gas distribution system, a spectral measurement system and a discharge measurement system, wherein the bipolar nanosecond pulse power supply drives dielectric barrier discharge of air and other gas mixtures among the multi-needle-to-plate electrodes in the reactor, and the gas mixtures are input to the reactor through the gas distribution system; the spectral measurement system collects photonic information of plasma discharge in real time and inputs the photonic information to a computer for spectral analysis; and the discharge measurement system collects discharge voltage and current of the high-voltage nanosecond pulse power supply in real time, and the discharge voltage and current are displayed through a digital oscilloscope. By virtue of the bipolar nanosecond narrow-pulse power supply, the large-area discharge plasmas are generated without a magnetic field; and the generated plasmas are uniform, diffusive, high in electron density, high in energy utilization ratio, low in energy consumption and easy to control in a discharge process.
Owner:DALIAN UNIV OF TECH

X-ray surface analysis and measurement apparatus

This disclosure presents systems for x-ray diffraction / scattering measurements that have x-ray flux and x-ray flux density several orders of magnitude greater than existing x-ray technologies. These may therefore be useful for applications such as structural analysis and crystallography.The higher brightness is achieved in part by using designs for x-ray targets that comprise a number of microstructures of one or more selected x-ray generating materials fabricated in close thermal contact with a substrate having high thermal conductivity. This allows for bombardment of the targets with higher electron density or higher energy electrons, which leads to greater x-ray brightness and therefore greater x-ray flux.The high brightness / high flux source may then be coupled to an x-ray reflecting optical system, which can focus the high flux x-rays to a spots that can be as small as one micron, leading to high flux density.
Owner:SIGRAY INC

Methods and Apparatus for Generating Strongly-Ionized Plasmas with Ionizational Instabilities

Methods and apparatus for generating strongly-ionized plasmas are disclosed. A strongly-ionized plasma generator according to one embodiment includes a chamber for confining a feed gas. An anode and a cathode assembly are positioned inside the chamber. A pulsed power supply is electrically connected between the anode and the cathode assembly. The pulsed power supply generates a multi-stage voltage pulse that includes a low-power stage with a first peak voltage having a magnitude and a rise time that is sufficient to generate a weakly-ionized plasma from the feed gas. The multi-stage voltage pulse also includes a transient stage with a second peak voltage having a magnitude and a rise time that is sufficient to shift an electron energy distribution in the weakly-ionized plasma to higher energies that increase an ionization rate which results in a rapid increase in electron density and a formation of a strongly-ionized plasma.
Owner:ZOND

High brightness x-ray absorption spectroscopy system

This disclosure presents systems for x-ray absorption fine structure (XAFS) measurements that have x-ray flux and flux density several orders of magnitude greater than existing compact systems. These are useful for laboratory or field applications of x-ray absorption near-edge spectroscopy (XANES) or extended x-ray fine absorption structure (EXFAS) spectroscopy.The higher brightness is achieved by using designs for x-ray targets that comprise a number of aligned microstructures of x-ray generating materials fabricated in close thermal contact with a substrate having high thermal conductivity. This allows for bombardment with higher electron density and / or higher energy electrons, leading to greater x-ray brightness and high flux.The high brightness x-ray source is then coupled to an x-ray reflecting optical system to collimate the x-rays, and a monochromator, which selects the exposure energy. Absorption spectra of samples using the high flux monochromatic x-rays can be made using standard detection techniques.
Owner:SIGRAY INC

System and method for quantitative analysis of the elemental composition of a material by laser-induced breakdown spectroscopy (LIBS)

A system and method for measuring elemental concentrations of a material from a sample containing several elements by LIBS analysis. The material is heated to generate plasma and its chemical composition is determined from spectral analysis of its radiation. The spectral lines of interest are identified among those emitted by the constituents of each element composing sample. The intensities of the spectral lined identified are measured. From an estimate of temperature, electron density and relative concentration values, the chemical composition of the plasma is calculated. The absorption coefficient according to wavelength is calculated for the spectral zones of the lines of interest. From an estimate of the plasma width, the spectral radiance of the plasma is calculated for the same spectral zones and then a comparison of the intensity and shape of the spectrum thus calculated with those of the spectrum measured is performed. These calculations and this comparison are repeated iteratively in order to adjust the temperature, electron density, relative values of the elemental concentrations and width of the plasma.
Owner:CENT NAT DE LA RECHERCHE SCI

Surface plasmon enhanced illumination system

Methods and apparatus for producing small, bright nanometric light sources from apertures that are smaller than the wavelength of the emitted light. Light is directed at a surface layer of metal onto a light barrier structure that includes one or more apertures each of which directs a small spot of light onto a target. The incident light excites surface plasmons (electron density fluctuations) in the top metal surface layer and this energy couples through the apertures to the opposing surface where it is emitted as light from the apertures or from the rims of the apertures. Means are employed to prevent or severely limit the extent to which surface plasmons are induced on the surface at the aperture exit, thereby constraining the resulting emissions to small target areas. The resulting small spot illumination may be used to increase the resolution of microscopes and photolithographic processes, increase the storage capacity and performance of optical data storage systems, and analyze the properties of small objects such as protein and nucleic acid molecules and single cells.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Semiconductor device and method for manufacturing the same

A manufacturing method of a semiconductor device of the present invention includes the steps of forming a first insulating film over a substrate, forming a semiconductor film over the first insulating film, oxidizing or nitriding the semiconductor film by conducting a plasma treatment to the semiconductor film under a condition of an electron density of 1×1011 cm−3 or more and 1×1013 cm−3 or less and an electron temperature of 0.5 eV or more and 1.5 eV or less, using a high frequency wave, forming a second insulating film to cover the semiconductor film, forming a gate electrode over the second insulating film, forming a third insulating film to cover the gate electrode, and forming a conductive film over the third insulating film.
Owner:SEMICON ENERGY LAB CO LTD

X-ray sources using linear accumulation

A compact source for high brightness x-ray generation is disclosed. The higher brightness is achieved through electron beam bombardment of multiple regions aligned with each other to achieve a linear accumulation of x-rays. This may be achieved by aligning discrete x-ray sub-sources, or through the use of x-ray targets that comprise microstructures of x-ray generating materials fabricated in close thermal contact with a substrate with high thermal conductivity. This allows heat to be more efficiently drawn out of the x-ray generating material, and in turn allows bombardment of the x-ray generating material with higher electron density and / or higher energy electrons, leading to greater x-ray brightness. The orientation of the microstructures allows the use of an on-axis collection angle, allowing the accumulation of x-rays from several microstructures to be aligned to appear to have a single origin, also known as “zero-angle” x-ray radiation.
Owner:SIGRAY INC

Methods and apparatus for terahertz wave amplitude modulation

A wave amplitude modulator for modulating a transmitted electromagnetic wave includes one or multiple self-gated capacitively coupled pair(s) of electron layers such as semiconductor or semimetal layers. Two electrical contacts are placed to each layer of electrons of the self-gated pair(s), and a power source is electrically connected to them. The power source, by varying the voltage applied between layers of electrons, tunes the electron density thereof, thereby adjusting the optical conductivity thereof, and the change in the optical conductivity of the layers of electrons causes an amplitude modulation of the transmitted electromagnetic wave passing through the capacitively coupled layers of electrons.
Owner:UNIV OF NOTRE DAME DU LAC

Variable intensity memory gravel pack imaging apparatus and method

The present invention provides apparatus and method for varying an operating parameter for a nuclear gamma ray tool for evaluating the integrity of gravel packing. The gamma ray output intensity and area of investigation are altered by changing a source housing geometry and the material from which the source housing is made. An actuator is provided to slide a variable electron density sleeve over the source and to vary the area of investigation by changing the distance between the source and a detector.
Owner:CORE LAB LP

System for enhancing intensity modulated radiation therapy, program product, and related methods

A system to provide enhanced computational efficiency in determining dose in a media of varying density from a high-energy radiation-beam for radiation treatment, program product, and related methods are provided. The system can include a radiation treatment planning computer and radiation treatment planning program product adapted to enhance optimization of a radiation treatment plan for delivering radiation to a complex medium defining a patient volume. The program product provides functions including those for predetermining a delivery machine-dependent representation of radiation dose for different electron densities selected over a representative range, predetermining a depth-dependent representation of central axis properties of a pencil beam passing through a complex medium, and determining with constant time computational complexity, radiation dose for each of a plurality of points of interest in a heterogeneous medium having a complex spatial distribution of heterogeneous electron densities by applying the predetermined machine-dependent and depth-dependent representations.
Owner:BEST MEDICAL INT

Diverging x-ray sources using linear accumulation

A compact source for high brightness x-ray generation is disclosed. The higher brightness is achieved through electron beam bombardment of multiple regions aligned with each other to achieve a linear accumulation of x-rays. This may be achieved through the use of x-ray targets that comprise microstructures of x-ray generating materials fabricated in close thermal contact with a substrate with high thermal conductivity. This allows heat to be more efficiently drawn out of the x-ray generating material, and allows bombardment of the x-ray generating material with higher electron density and / or higher energy electrons, leading to greater x-ray brightness. The orientation of the microstructures allows the use of a take-off angle at or near 0°, allowing the accumulation of x-rays from several microstructures to be aligned and be used to form a beam in the shape of an annular cone.
Owner:SIGRAY INC

Electron beam apparatus and spacer for reducing electrostatic charge

An electron beam apparatus including a hermetic container provided with an electron source, in which, when a first member is arranged in the hermetic container, at least part of the first member is coated with a film, and the film is configured in such a manner that it includes two regions, a first region and a second region different in electron density from the first region and the second region forms a network in the first region. This three-dimensional network structure allows a member being charged to be preferably controlled. Thereby, it is possible to control the effects of a member being charged which is used in an electron beam apparatus.
Owner:CANON KK

Gas plasma antenna

A gas plasma antenna with a rigid, flexible, or semi-flexible substrate and an improved method of generating a uniform electron density. The antenna comprises a plasma display panel (PDP) containing a multiplicity of Plasma-shells, each Plasma-shell containing a gas which is ionized to produce electron density. Each Plasma-shell acts alone or in concert with other Plasma-shells to form a dipole or pattern of dipoles.
Owner:IMAGING SYST TECH

X-ray fluorescence system with high flux and high flux density

We present a micro-x-ray fluorescence (XRF) system having a high-brightness x-ray illumination system with high x-ray flux and high flux density. The higher brightness is achieved in part by using x-ray target designs that comprise a number of microstructures of x-ray generating materials fabricated in close thermal contact with a substrate having high thermal conductivity. This allows for bombardment of the targets with higher electron density or higher energy electrons, which leads to greater x-ray flux. The high brightness / high flux x-ray source may then be coupled to an x-ray optical system, which can collect and focus the high flux x-rays to spots that can be as small as one micron, leading to high flux density at the fluorescent sample. Such systems may be useful for a variety of applications, including mineralogy, trace element detection, structure and composition analysis, metrology, as well as forensic science and diagnostic systems.
Owner:SIGRAY INC

Method for manufacturing semiconductor device

The present invention provides a manufacturing method of a semiconductor device at low cost and with high reliability. According to one feature of a method for manufacturing a semiconductor device includes the steps of forming a metal film over a substrate; forming a metal oxide film over the surface of the metal film by performing plasma treatment to the metal film in an atmosphere containing oxygen; forming a base film over the metal oxide film; forming an element layer having a thin film transistor over the base film; forming a protective layer over the element layer; forming an opening after selectively removing the metal film, the metal oxide film, the base film, the element layer, and the protective layer; separating the base film, the element layer, and the protective layer from the substrate; and sealing the base film, the element layer, and the protective layer by using flexible first and second films, in which an electron density of plasma around the substrate is 1×1011 cm−3 or more and 1×1013 cm−3 or less and an electron temperature of the plasma treatment is 0.5 eV or more and 1.5 eV or less.
Owner:SEMICON ENERGY LAB CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products