Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

508 results about "Electron density" patented technology

In chemistry electron density is the measure of the probability of an electron being present at a specific location. According to quantum mechanics, due to the uncertainty principle on an atomic scale the exact location of an electron cannot be predicted, only the probability of its being at a given position; therefore electrons in atoms and molecules act as if they are "smeared out" in space. For one-electron systems, the electron density at any point is proportional to the square magnitude of the wavefunction.

Electron beam exciter for use in chemical analysis in processing systems

ActiveUS20100032587A1Disparity will become so greatHigh electron energyCathode ray tubes/electron beam tubesRadiation therapyElectron sourceFluorescence
The present invention is directed to a gas line electron beam exciter, gas line electron beam excitation system and method for exciting a gas using an electron beam exciter. The electron beam exciter generally comprises a variable density electron source for generating a cloud of electrons in an electron chamber and a variable energy electron extractor for accelerating electrons from the electron chamber as an electron beam and into an effluent stream for fluorescing species in the effluent. The electron density of the electron beam is variably controlled by adjusting the excitation power applied to the variable density electron source. The electrons in the electron chamber reside at a reference electrical potential of the chamber, typically near ground electrical potential. The electron energy of the electron beam is variably controlled by adjusting an electrical potential across the variable energy electron extractor, which energizes the electrons through an extraction hole of the chamber and toward the extractor. The greater the difference in the electrical potential between the electron extractor and the electron source, the higher the energy imparted to the electrons in the electron beam. The excitation power applied to the electron source can be adjusted independently from the electron energy of the electron beam, thereby altering the electron density of the electron beam without changing the energy level of the electrons of the electron beam.
Owner:VERITY INSTR +1

Method and arrangement for the efficient generation of short-wavelength radiation based on a laser-generated plasma

InactiveUS20060215712A1Losses in the main pulse (e.g., due to transmission) are minimizedLaser using scattering effectsActive medium materialIon densityElectromagnetic radiation
The invention is directed to a method and an arrangement for the efficient generation of intensive short-wavelength radiation based on a plasma. The object of the invention is to find a novel possibility for the generation of intensive short-wavelength electromagnetic radiation, particularly EUV radiation, which permits the excitation of a radiation-emitting plasma with economical gas lasers (preferably CO2 lasers). This object is met, according to the invention, in that a first prepulse for reducing the target density is followed by at least a second prepulse which generates free electrons in the target by multiphoton ionization after a virtually complete recombination of free electrons generated by the first prepulse has taken place due to a long-lasting expansion of the target for reducing the target density, and the main pulse of a gas laser with a low critical electron density typical for its wavelength is directed to the target immediately after the second prepulse when the second prepulse in the expanded target, whose ion density corresponds to the critical electron density of the gas laser, has created enough free electrons so that an efficient avalanche ionization is triggered by the main pulse of the gas laser until reaching the ionization level for the desired radiation emission of the plasma.
Owner:XTREME TECH

Experimental apparatus for acquiring large-area uniform discharge plasmas

The invention relates to an experimental apparatus for acquiring large-area uniform discharge plasmas, which belongs to the technical field of plasmas. The experimental apparatus comprises a bipolar nanosecond pulse power supply, a reactor, multi-needle-to-plate electrodes, a gas distribution system, a spectral measurement system and a discharge measurement system, wherein the bipolar nanosecond pulse power supply drives dielectric barrier discharge of air and other gas mixtures among the multi-needle-to-plate electrodes in the reactor, and the gas mixtures are input to the reactor through the gas distribution system; the spectral measurement system collects photonic information of plasma discharge in real time and inputs the photonic information to a computer for spectral analysis; and the discharge measurement system collects discharge voltage and current of the high-voltage nanosecond pulse power supply in real time, and the discharge voltage and current are displayed through a digital oscilloscope. By virtue of the bipolar nanosecond narrow-pulse power supply, the large-area discharge plasmas are generated without a magnetic field; and the generated plasmas are uniform, diffusive, high in electron density, high in energy utilization ratio, low in energy consumption and easy to control in a discharge process.
Owner:DALIAN UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products